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Preface

The lectures of Professor Michael Moskalets introduce basic concepts of
the scattering approach to transport phenomena in time-dependent, dy-
namic quantum systems. For stationary problems scattering theory has
been widely and successfully used to discuss electronic transport in struc-
tures so small that interference effects become important. Such systems are
central to nanophysics and mesoscopic physics. The lectures extend this
approach to time-dependent scatterers.

Scattering theory derives its success from two sources. The approach
captures essential aspects of real experiments and is therefore useful in the
laboratory. Scattering theory is often referred to as a formalism but this is
almost a misnomer. In the realm of theories, the scattering approach has
the advantage that it appeals to our intuition. It is an approach that is
clearly not reserved only for physicists with a theoretical inclination.

The lectures provide an introduction to the stationary scattering theory
and then bring the reader to the forefront of current research in the trans-
port theory of time-dependent scatterers. Of interest are the charge and
heat currents and the noise properties of such systems. Important examples
are quantum pumps and mesoscopic capacitors subject to time-dependent
potentials.

The lectures are clearly structured and focus on the principal points
in the theoretical development. The author is didactical. The lectures
develop all the mathematical steps and also provide a physically clear and
transparent description of processes in dynamic nanoscopic and mesoscopic
systems. The lectures present an excellent record of the current state of
the field. This makes these lectures useful not only to students but also to
advanced researchers.

Markus Büttiker
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Chapter 1

Landauer–Büttiker formalism

According to the Landauer–Büttiker approach [1–6] the transport phenom-
ena in mesoscopic [7, 8] conducting systems can be described with the help
of a corresponding quantum-mechanical scattering problem. The meso-
scopic system is assumed to be connected to macroscopic contacts acting
as reservoirs of electrons, which are scattered by the mesoscopic sample. Af-
ter scattering the electrons return to the original contact or go to a different
one. Thus the problem of calculating such transport characteristics as, for
example, electrical conductance or thermal conductance is reduced to solv-
ing a quantum-mechanical scattering problem with a potential profile cor-
responding to the sample under consideration [9] with possibly subsequent
statistical averaging [10]. All information concerning transport properties
of a sample is encoded in its scattering matrix, Ŝ.

We concentrate on a single-particle scattering matrix. Therefore, we
neglect electron-electron interactions and use the Schrödinger equation for
spinless electrons as the basic equation. In principle interactions can be
easily incorporated on the mean-field level.

1.1 Scattering matrix

In quantum mechanics an electron is characterized by the wave function,
Ψ(t, r), dependent on time t and on a spatial coordinate r. If the wave func-
tion, Ψ(in), for an electron incident to the scatterer is known then using
the Schrödinger equation one can calculate the wave function, Ψ(out), for a
scattered electron. One can ask whether one needs to solve the Schrödinger
equation for each Ψ(in)

j ? The answer is no. It is enough to solve the scat-

tering problems for incident states ψ(in)
α constituting the full orthonormal

1
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basis. After that, using the superposition principle, one can find the solu-
tion for the scattering problem with arbitrary incident state, Ψ(in)

j .

To this end we expand an incident electron wave function, Ψ(in), in the
basis functions ψ(in)

α ,

Ψ(in) =
∑

α

aα ψ
(in)
α . (1.1)

Then we expand a wave function for the scattered electron, Ψ(out), in the
basis functions ψ(out)

α ,

Ψ(out) =
∑

β

bβ ψ
(out)
β . (1.2)

The set of functions ψ(in)
α and ψ(out)

β constitutes the full orthonormal basis.
The problem is to find the coefficients bβ if the set of coefficients aα

is known. First we consider an auxiliary problem, namely the scattering
of an electron with wave function Ψ(in)

1 = ψ(in)
1 . In this case the set of

coefficients in Eq. (1.1) is the following: (1, 0, 0, . . . ). The solution for this
scattering problem we write as Eq. (1.2) with coefficients Sβ1,

Ψ(out)
1 =

∑

β

Sβ1 ψ
(out)
β . (1.3)

The coefficient Sβ1 is a quantum-mechanical transition amplitude from the

state ψ(in)
1 to the state ψ(out)

β . Note if the incident wave function is mul-
tiplied by some constant factor A then the wave function for a scattered
state is also multiplied by the same factor,

Ψ(in)
1 = Aψ(in)

1 ⇒ Ψ(out)
1 = A

∑

β

Sβ1 ψ
(out)
β . (1.4)

After solving the scattering problem with incident state Ψ(in)
γ = ψ(in)

γ we
find the coefficients Sβγ ,

Ψ(out)
γ =

∑

β

Sβγ ψ
(out)
β . (1.5)

With coefficients Sαβ we can solve the scattering problem for an arbi-
trary incident state. Formally the corresponding algorithm is the following:
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1. The wave function for an incident state is expanded into the series
in basis functions ψ(in)

α , Eq. (1.1).
2. The scattered state wave function, Ψ(out), is represented as the sum

of partial contributions, Ψ(out)
α , due to scattering of partial incident waves,

Ψ(in)
α = aα ψ

(in)
α ,

Ψ(out) =
∑
α
Ψ(out)

α ,

Ψ(out)
α = aα

∑
β
Sβα ψ

(out)
β .

(1.6)

3. The coefficients bβ for the scattered state of interest, Ψ(out) =∑
α
aα
∑
β
Sβα ψ

(out)
β ≡

∑
β
bβ ψ

(out)
β , are the following

bβ =
∑

α

Sβα aα . (1.7)

Equation (1.7) solves the problem: It expresses the coefficients bβ for
the scattered wave function in terms of the coefficients aα for the incident
wave function. It is convenient to treat the quantities, Sβα, of Eq. (1.7)
as the elements of some matrix, Ŝ, which is referred to as the scattering
matrix.1

If the coefficients aα and bβ are collected into vector columns

b̂ =

⎛

⎜⎝
b1
b2
...

⎞

⎟⎠ , â =

⎛

⎜⎝
a1
a2
...

⎞

⎟⎠ , (1.8)

then the corresponding relations simplify to

b̂ = Ŝâ . (1.9)

As we already mentioned, the scattering matrix elements, Sαβ , are

quantum-mechanical amplitudes for a particle in the state ψ(in)
β to be scat-

tered into the state ψ(out)
α . The order of indices is important. We use the

convention that the first index (for the element Sαβ it is α) corresponds to
a scattered state while the second index corresponds to an incident state.

1The scattering matrix elements are directly related to the corresponding single-particle
Green’s functions [11, 12]. For the generalization to the periodically driven case see
Ref. [13].
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1.1.1 Scattering matrix properties

General physical principles put some constraints on the scattering matrix
elements.

1.1.1.1 Unitarity

Particle number conservation during scattering requires the scattering ma-
trix to be unitary,

Ŝ†Ŝ = ŜŜ† = Î . (1.10)

Here Î is a unit matrix of the same dimensions as Ŝ,

Î =

⎛

⎜⎜⎝

1 0 0 . . .
0 1 0 . . .
0 0 1 . . .

. . .

⎞

⎟⎟⎠ . (1.11)

The elements of the matrix Ŝ† are related to the elements of the scattering
matrix Ŝ in the following way:

(
Ŝ†)

αβ
=
(
Ŝ
)∗
βα

. Therefore, the expanded
equation (1.10) reads

Nr∑

α=1

S∗αβ Sαγ = δβγ , (1.12)

Nr∑

β=1

Sαβ S
∗
δβ = δαδ . (1.13)

To prove unitarity, for instance, in the case when the wave function is
normalized, i.e., it corresponds to scattering of a single particle, we use the
integral over space for both the incident wave function and the scattered
wave function:

∫
d3r |Ψ(in)|2 =

∫
d3r |Ψ(out)|2 = 1 . (1.14)

Then we use Eqs. (1.1) and (1.2). For instance, for Ψ(in) we get,
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∫
d3r |Ψ(in)|2 =

∫
d3r

∑
α
aα ψ

(in)
α

(∑
β
a∗β ψ

(in)
β

)∗

=
∑
α

∑
β
aα a∗β

∫
d3rψ(in)

α

(
ψ(in)
β

)∗
=
∑
α

∑
β
aα a∗β δαβ

=
∑
α
|aα|2 = 1 .

(1.15)

Here we took into account that the functions ψ(in)
α are orthonormal,

∫
d3rψ(in)

α

(
ψ(in)
β

)∗
= δαβ , (1.16)

where δαβ is the Kronecker symbol,

δαβ =

⎧
⎨

⎩

1 , α = β ,

0 , α ̸= β .
(1.17)

By analogy we find for Ψ(out):

∑

α

|bα|2 = 1 . (1.18)

Therefore, from Eqs. (1.15) and (1.18) it follows that

∑

α

|aα|2 =
∑

α

|bα|2 . (1.19)

Representing the coefficients aα and bα as vector columns, â and b̂, we
write

∑
α
|aα|2 = â† â ,

∑
α
|bα|2 = b̂† b̂ .

(1.20)

Next we take into account that b̂ = Ŝ â and, correspondingly, b̂† = â† Ŝ†

and finally calculate,



July 28, 2011 15:17 World Scientific Book - 9in x 6in moskalets-ws-book9x6

6 Scattering matrix approach to non-stationary quantum transport

b̂† b̂ = â† Ŝ†Ŝ â = â† â . (1.21)

From the last equality the required relation, Eq. (1.10), follows directly.
Note, however, that for the particles with continuous spectrum, which

we will consider, the wave function is normalized to the Dirac delta function
rather than to unity. In such a case the scattering of particles with fixed
incoming flow is a more natural problem. For instance, a plane wave eikx

corresponds to a flow of particles with intensity v = !k/m rather than to
a single particle. Charge conservation in this case (under stationary con-
ditions) implies current conservation. Therefore, it is convenient to choose
the basis functions normalized to carry a unit flux, see, e.g., Refs [5, 11].
Then we can say more precisely:
Equation (1.9) defines the scattering matrix Ŝ if the vectors b̂ and â are
calculated using the unit flux basis.
The square of the modulus of a scattering matrix element defines an inten-
sity of a scattered flow if the intensity of an incident flow is unity. Then
the unitarity of the scattering matrix reflects particle flow conservation.

1.1.1.2 Micro-reversibility

Micro-reversibility is an invariant of the equations of motion under time
reversal. Neither classical physics nor quantum physics makes a distinction
between forward time and backward time.

If we change simultaneously, t → −t and v → −v, then the classical
equations of motion predict that the particle will move along the same
trajectory but in the opposite direction. From the scattering theory point of
view movement in the opposite direction means that the scattered particle
becomes an incoming one and the incoming particle becomes a scattered
one.

Quantum-mechanical formalism deals with states rather than with par-
ticles. The additional complication comes from the fact that the wave
function is complex. To analyze micro-reversibility in quantum mechanics
[14] we consider the Schrödinger equation

i! ∂Ψ
∂t

= HΨ , (1.22)

where H is the Hamiltonian dependent on the momentum p of a parti-
cle. Velocity reversal within classical physics is equivalent to a momentum
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reversal within quantum physics. The Hamiltonian [and, correspondingly,
Eq. (1.22)] is invariant under momentum reversal, H(p) = H(−p). While
under time reversal the sign on the left hand side (LHS) of Eq. (1.22) is
changed. On the other hand if simultaneously we use the complex conjugate
equation and take into account that the Hamiltonian is Hermitian, H∗ = H,
then we find that the transformed equation for the complex conjugate wave
function Ψ∗(−t) is identical to the original equation for Ψ(t),

i!
∂
(
Ψ∗
)

∂(−t) = H
(
Ψ∗
)
. (1.23)

We conclude: If the evolution in forward time is described by the wave func-
tion Ψ(t) then the evolution in backward time is described by the complex
conjugate function Ψ∗(−t). For scattering theory this means that if initially
the incident particle is in the state Ψ(in)(t) and the scattered particle is in

the state Ψ(out)(t) then under time reversal the state
(
Ψ(out)(−t)

)∗
is for

an incident particle and the state
(
Ψ(in)(−t)

)∗
is for a scattered particle.

Such symmetry results in various properties of the scattering matrix.
To clarify these we will consider scattering in both forward and backward
times in detail. The initial scattering process: Ψ(in)(t) =

∑
α
aα ψ

(in)
α (t) is

an incident wave and Ψ(out)(t) =
∑
β
bβ ψ

(out)
β (t) is a scattered wave. The

coefficients aα and bβ are related through equation (1.9). The scattering

process after time reversal:
(
Ψ(out)(−t)

)∗
=
∑
β
b∗β

(
ψ(out)
β (−t)

)∗
is an in-

cident wave and
(
Ψ(in)(−t)

)∗
=
∑
α
a∗α

(
ψ(in)
α (−t)

)∗
is a scattered wave.

Under both time reversal and complex conjugation the basis functions for

incident and scatterer states replace each other,
(
ψ(out)
β (−t)

)∗
= ψ(in)

β (t).

Therefore, we can write

(
Ψ(out)(−t)

)∗
=
(∑

β
bβ ψ

(out)
β (−t)

)∗
=
∑
β
b∗β ψ

(in)
β (t) ,

(
Ψ(in)(−t)

)∗
=
(∑

α
aα ψ

(in)
α (−t)

)∗
=
∑
α
a∗α ψ

(out)
α (t) .

(1.24)

Since the Hamiltonian and the basis functions remain invariant the scat-
tering matrix is invariant as well. Therefore, the coefficients a∗α and b∗β in
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Eq. (1.24) are related in the same way as the corresponding coefficients (bβ
and aα) in Eqs. (1.1) and (1.2),

â∗ = Ŝ b̂∗ . (1.25)

Thus the sets of coefficients â and b̂ have to fulfill two equations, (1.9)
and (1.25). From Eq. (1.9) we find,

â = Ŝ−1b̂ , (1.26)

where Ŝ−1 is an inverse matrix, ŜŜ−1 = Ŝ−1Ŝ = Î. Comparing Eqs. (1.26)
and (1.25) we conclude that Ŝ∗ = Ŝ−1. Further, from the unitarity,
Eq. (1.10), it follows that

Ŝ†Ŝ = Î

Ŝ−1Ŝ = Î

⎫
⎬

⎭ ⇒ Ŝ† = Ŝ−1 . (1.27)

Finally we conclude that micro-reversibility requires the scattering matrix
to be invariant under the transposition operation. In other words, the
scattering matrix elements are symmetric in their indices,

Ŝ = ŜT ⇒ Sαβ = Sβα . (1.28)

Note the presence of a magnetic field H slightly changes the micro-
reversibility condition: In addition to a time and a momentum reversal
we need to invert the magnetic field direction, H → −H. It is clear, for
instance, from the Hamiltonian of a free particle with mass m and charge
e propagating along the axis x in the presence of a magnetic field,

H =
(px − eAx)2

2m
,

where Ax is a vector potential projection onto the axis x. Note that H =
rot A. Thus in the presence of a magnetic field Eq. (1.28) is transformed
[5]

Ŝ(H) = ŜT (−H) ⇒ Sαβ(H) = Sβα(−H) . (1.29)

In particular, the reflection amplitude, α = β, is an even function for a
magnetic field.
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1.2 Current operator

Now we consider how the scattering matrix formalism can be applied to
transport phenomena in mesoscopic samples. The scattering matrix re-
lies on the single-electron approximation. Within this approximation the
separate electrons are considered as independent particles whose interac-
tion with other electrons, nuclei, impurities, quasi-particles, etc. can be
described via the effective potential energy, Ueff (t, r). Such an approach
allows a simple and physically transparent description of transport phe-
nomena on a qualitative level and in many cases even on a quantitative
level.

Let us consider a mesoscopic sample connected to several, Nr, macro-
scopic contacts acting as electron reservoirs, Fig. 1.1. Electrons, propagat-
ing from some reservoir to the sample, enter it, are scattered inside it, and
then leave it to go to the same or a different reservoir. To calculate the
current flowing between the sample and the reservoirs we do not need to
know what happens with each electron inside the sample. It is enough to
look at the incoming and outgoing electron flows. To this end we enclose
a sample by a fictitious surface Σ, see Fig. 1.1, and consider electron flows
crossing this surface in the directions to the sample or back. In this case
we, in fact, deal with the scattering problem: Electrons propagating to the
sample are incident, or incoming, particles [we denote them via an upper
index (in)], while electrons propagating from the sample are scattered, or
outgoing, particles [upper index (out)]. We emphasize that we consider
only elastic, i.e., energy-conserving, scattering. To neglect inelastic scat-
tering we assume low temperatures when the phase coherence length, Lϕ,
is much larger than the size of a sample, Lϕ(T )≫ L.

It is convenient to choose the eigen wave functions for electrons in leads
connecting a scatterer to the reservoirs as the basis functions for defining
the scattering matrix elements. These wave functions can be represented as
the product of longitudinal and transverse terms. For the sake of simplicity
we assume that the leads have only one conducting sub-band. Therefore,
there is only one type of transverse wave function in each lead. We choose
plane waves propagating to the scatterer (wave number −k) or from the
scatterer (wave number k) as longitudinal wave functions. The former
(latter) wave functions comprise the basis for incident, ψ(in)

α , (scattered,
ψ(out)
α ) electrons.
To calculate the current flowing between the scatterer and the reser-

voirs we use the second quantization formalism. This formalism deals with
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Ŝ Σ

α = 1

α = 2

α = Nr

α = 3, · · · , Nr − 1

Fig. 1.1 A mesoscopic sample with scattering matrix Ŝ. The index α = 1, 2, . . . , Nr

numbers electron reservoirs. The arrows directed to (from) the scatterer show a propa-
gation direction for incident (scattered) electrons. The electron flow is calculated at the
surface Σ shown as a dashed line.

operators creating/annihilating particles in some quantum state. We use
different operators corresponding to incident electrons, â†α(E)/âα(E), and
to scattered electrons, b̂†α(E)/b̂α(E). The operator â†α(E) creates one
electron in the state with wave function ψ(in)

α (E)/
√
!vα(E), while the

operator b̂†α(E) creates one electron in the state with wave function
ψ(out)
α (E)/

√
!vα(E). The factor 1/

√
!vα(E) takes account of the unit flux

normalization. Note the index α can be composite, i.e., it can include,
apart from the reservoir’s number, the additional sub-indices, for instance,
a sub-band number, an electron spin, etc.

Introduced fermionic operators are subject to the following anti-
commutation relations:

â†α(E) âβ(E
′) + âβ(E

′) â†α(E) = δαβ δ(E − E′) ,

(1.30)

b̂†α(E) b̂β(E
′) + b̂β(E

′) b̂†α(E) = δαβ δ(E − E′) .
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Next we introduce the field operators for electrons in lead α,

Ψ̂α(t, r) =
1√
2π

∞∫

0

dE e−i
E
! t

{
âα(E)

ψ(in)
α (E, r)√
!vα(E)

+ b̂α(E)
ψ(out)
α (E, r)√
!vα(E)

}
,

(1.31)

Ψ̂†
α(t, r) =

1√
2π

∞∫

0

dE ei
E
! t

{
â†α(E)

ψ(in)∗
α (E, r)√
!vα(E)

+ b̂†α(E)
ψ(out)∗
α (E, r)√
!vα(E)

}
.

Here vα(E) = !kα(E)/m is an electron’s velocity, r = (x, r⊥), with x longi-
tudinal and r⊥ transverse spatial coordinates within the lead α. Note that
1/(hvα(E)) is the density of states, (2π)−1dk/dE, for a one-dimensional
conductor.

Using the field operators we write the operator, Îα, for a current flowing
in the lead α

Îα(t, x) =
i!e
2m

∫
dr⊥

{
∂Ψ̂†

α(t, r)

∂x
Ψ̂α(t, r)− Ψ̂†

α(t, r)
∂Ψ̂α(t, r)

∂x

}
. (1.32)

Here the positive direction is from the scatterer to the reservoir.
Next we represent the basis wave functions as the product of transverse

and longitudinal parts,

ψ(in)(E, r) = ξE(r⊥) e−ik(E) x ,

ψ(out)(E, r) = ξE(r⊥) eik(E) x ,
(1.33)

and take into account that the transverse wave functions are normalized,

∫
dr⊥ |ξE(r⊥)|2 = 1 . (1.34)

In what follows we are interested in currents flowing under the bias much
smaller than the Fermi energy, µ0. Therefore, in all equations the main
contribution comes from energies within the interval that are much smaller
than the energy itself,2

2In the case of a stationary current this restriction can be safely relaxed since the
calculation of an expectation value implies E = E′. While for calculation of a time-
dependent current or a noise and higher current cumulants (even in the stationary case)
the restriction (1.35) is important.
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|E − E′|≪ E ∼ µ0 . (1.35)

The last inequality allows us to strongly simplify the equation for a current.
We can put, v(E) ≈ v(E′) and k(E) ≈ k(E′). Moreover, within the same
sub-band the transverse wave functions are the same, ξE = ξE′ . Note
if the functions ξE and ξE′ are from different sub-bands then they are

orthogonal,
∫
dr⊥ ξE(r⊥)

(
ξE′(r⊥)

)∗
= 0. That allows us to split the total

current into the sum of contributions from different sub-bands. Therefore,
we can assume each lead having only one sub-band.

Substituting Eq. (1.31) into Eq. (1.32) and taking into account
Eq. (1.35) we calculate

Îα(t, x) =
i!e
2m

∫∫
dE dE′ e

i E−E′
! t

hvα(E)

∫
dr⊥ |ξE,α(r⊥)|2

×
{

∂
∂x

[
â†α(E)eikα(E)x + b̂†α(E)e−ikα(E)x

](
âα(E′)e−ikα(E)x + b̂α(E′)eikα(E)x

)

−
(
â†α(E)eikα(E)x + b̂†α(E)e−ikα(E)x

)
∂
∂x

[
âα(E′)e−ikα(E)x + b̂α(E′)eikα(E)x

]}
.

Differentiating over x and combining similar terms we finally arrive at the
following equation for the current operator [5],

Îα(t) =
e

h

∫∫
dE dE′ ei

E−E′
! t

{
b̂†α(E) b̂α(E

′)− â†α(E) âα(E
′)
}
. (1.36)

In what follows we use this equation and calculate, in particular, a mea-
surable current, Iα = ⟨Îα⟩, flowing into the lead α. Here ⟨. . . ⟩ stands for
quantum-statistical averaging over the state of incoming electrons. To cal-
culate such an average for the products of â†â and b̂†b̂ we take into account
that the creation and annihilation operators, â†α and âα, correspond to par-
ticles propagating from the reservoir. We suppose that the presence of a
mesoscopic scatterer does not affect the equilibrium properties of reservoirs.
Therefore, the incoming particles are equilibrium particles of macroscopic
reservoirs. And for them we can use the standard rules for calculating the
quantum-statistical average of the product of creation and annihilation op-
erators. In addition we suppose that electrons at different reservoirs, α ̸= β,
are not correlated. Then we can write
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⟨â†α(E) âβ(E′)⟩ = δαβ δ(E − E′) fα(E) ,

⟨âα(E) â†β(E
′)⟩ = δαβ δ(E − E′)

{
1− fα(E)

}
,

(1.37)

where fα(E) is the Fermi distribution function [15] for electrons in the
reservoir α,

fα(E) =
1

1 + e
E−µα
kBTα

. (1.38)

Here kB is the Boltzmann constant, µα is the Fermi energy (the electro-
chemical potential) and Tα is the temperature of the reservoir α.

In contrast the operators b̂†α and b̂α correspond to scattered particles
which, in general, are non-equilibrium particles. To calculate the quantum-
statistical average for (the product of) them we need to express them in
terms of the operators for incoming particles for which we know how to
calculate a corresponding average. To this end we consider both the field
operator, Ψ̂(in), corresponding to an incoming wave,

Ψ̂(in) =
Nr∑

α=1

âα
ψ(in)
α√
!vα

,

and the field operator, Ψ̂(out), corresponding to a scattered wave,

Ψ̂(out) =
Nr∑

β=1

b̂β
ψ(out)
β√
!vβ

.

These equations are similar to Eqs. (1.1) and (1.2) excepting the coefficients
are now the second quantization operators. Thus each of the operators b̂β
is expressed in terms of all the operators âα through the elements of the
scattering matrix, which is an Nr × Nr unitary matrix. By analogy with
Eq. (1.7) we write [5]

b̂α =
Nr∑

β=1

Sαβ âβ ,

(1.39)

b̂†α =
Nr∑

β=1

S∗αβ â
†
β .
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The equations (1.36)–(1.39) constitute the basis of the scattering matrix
approach to transport phenomena in mesoscopic physics.

1.3 Direct current and the distribution function

Let us calculate a current, Iα,

Iα = ⟨Îα⟩ , (1.40)

flowing into the lead α under the DC bias, ∆Vαβ = Vα − Vβ . In this case
the different reservoirs have different electrochemical potentials,

µα = µ0 + eVα . (1.41)

Note we include the potential energy eVα in the µα. Then the energy E
means the total (kinetic plus potential) energy of an electron. The use of
a total energy (instead of a kinetic one) is convenient since it is conserved
(in the stationary case) while an electron propagates from one reservoir
through the scatterer to another reservoir.

The current operator, Îα(t), is given in Eq. (1.36). After averaging
Eq. (1.40) reads

Iα =
e

h

∫
dE
{
f (out)
α (E)− f (in)

α (E)
}
, (1.42)

where we have introduced the distribution functions for incident electrons,
f (in)
α , and for scattered electrons, f (out)

α ,

⟨â†α(E) âα(E′)⟩ = δ(E − E′) f (in)
α (E) ,

⟨b̂†α(E) b̂α(E′)⟩ = δ(E − E′) f (out)
α (E) .

(1.43)

The physical meaning for the introduced distribution functions is that the
quantity dE

h f (in/out)
α (E) defines the average number of electrons with an

energy within the interval dE near E crossing the cross-section of the lead
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α in unit time to/from the scatterer. The direct current is obviously the
difference of the flows times an electron charge e.

According to Eq. (1.37) the distribution function for incoming electrons
is the Fermi function for a corresponding reservoir,

f (in)
α (E) = fα(E) . (1.44)

To calculate the distribution function for scattered electrons, f (out)
α (E), we

use Eqs. (1.39), (1.37) and find,

δ(E − E′) f (out)
α (E) ≡ ⟨b̂†α(E) b̂α(E

′)⟩

=
Nr∑

β=1

Nr∑

γ=1

S∗αβ(E)S∗αγ(E
′) ⟨â†β(E) âγ(E

′)⟩

=
Nr∑

β=1

Nr∑

γ=1

S∗αβ(E)S∗αγ(E
′) δ(E − E′) δβγ fβ(E) .

Therefore, the distribution function, f (out)
α (E), for electrons scattered into

the lead α depends on the Fermi functions, fβ(E), for all the reservoirs,
β = 1, 2, . . . , Nr:

f (out)
α (E) =

Nr∑

β=1

|Sαβ(E)|2 fβ(E) . (1.45)

Note if all the reservoirs have the same electrochemical potentials and tem-
peratures (hence the same Fermi functions), fβ = f0, ∀β, then the distribu-
tion function for scattered electrons is the Fermi function as well, i.e., the
scattered electrons are in equilibrium. To show this we use the unitarity of
the scattering matrix,

ŜŜ† = Î ⇒
Nr∑

β=1

|Sαβ(E)|2 = 1 , (1.46)

and find f (out)
α (E) = f0(E)

Nr∑
β=1

|Sαβ(E)|2 = f0(E). In contrast, if the po-

tentials or temperatures of different reservoirs are different then the scat-
tered electrons are characterized by the non-equilibrium distribution func-
tion, Fig. 1.2.
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f (out)
1

1

µ1 µ2 E

Fig. 1.2 The distribution function for electrons scattered into the contact α = 1. The
height of a step at E = µ1 is |S12|2. The scatterer is connected to two electron reservoirs
at zero temperature, T1 = T2 = 0, and having chemical potentials µ1 and µ2.

Substituting Eqs. (1.44) and (1.45) into Eq. (1.42) and using Eq. (1.46)
we finally calculate a direct current,

Iα =
e

h

∫
dE

Nr∑

β=1

|Sαβ(E)|2
{
fβ(E)− fα(E)

}
. (1.47)

We see that the current flowing into the lead α depends on the difference
of the Fermi functions times the corresponding square of the scattering
matrix element modulus. If all the reservoirs have the same potentials and
temperatures then the current is zero. Otherwise there is a current through
the sample.

1.3.1 Conservation of a direct current

Let us check whether Eq. (1.47) fulfills a direct current conservation law,
Nr∑

α=1

Iα = 0 , (1.48)

which is a direct consequence of no charge accumulation inside the meso-
scopic sample. This equation tells us that the sum of the current flowing
into all the leads is zero. To avoid misunderstanding we stress that in each
lead the positive direction is chosen from the scatterer to the corresponding
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reservoir. Therefore, the current has a sign “+” or “−” if it is directed from
or to the scatterer.

First of all we derive Eq. (1.48). To this end we use the electrical charge
continuity equation,

div j+
∂ρ

∂t
= 0 , (1.49)

where j is a current density vector and ρ is a charge density. We integrate it
over the volume enclosed by the surface Σ (see Fig. 1.1). Then transforming
the volume integral of a current density divergence into the surface integral
of a current density and taking into account that the current flows into the
leads only we arrive at the following

Nr∑

α=1

Iα(t) +
∂Q

∂t
= 0 . (1.50)

Here Q is the charge on the scatterer. In the stationary case under con-
sideration there are only direct currents in the leads and the charge Q is
constant. Then Eq. (1.50) results in Eq. (1.48). In the non-stationary case
we should average Eq. (1.50) over time. With the following definition of a
direct current, Iα = limT→∞

1
T
∫ T
0 dt Iα(t), and assuming that the charge

Q(t) is bounded we again conclude that Eq. (1.48) is a consequence of
Eq. (1.50).

Now we check whether Eq. (1.47) does satisfy Eq. (1.48). We use the
unitarity of the scattering matrix in a form slightly different from but still
equivalent to Eq. (1.46)

Ŝ†Ŝ = Î ⇒
Nr∑

α=1

|Sαβ(E)|2 = 1 . (1.51)

Then from Eq. (1.47) we get

Nr∑
α=1

Iα = e
h

∫
dE

Nr∑
α=1

Nr∑
β=1

|Sαβ(E)|2
{
fβ(E)− fα(E)

}

= e
h

∫
dE

{
Nr∑
β=1

fβ(E)
Nr∑
α=1

|Sαβ(E)|2 −
Nr∑
α=1

fα(E)
Nr∑
β=1

|Sαβ(E)|2
}

= e
h

∫
dE

{
Nr∑
β=1

fβ(E)−
Nr∑
α=1

fα(E)

}
= 0 ,
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as expected. Therefore, we have illustrated the earlier mentioned connec-
tion between unitarity and current conservation. Next we will use Eq. (1.47)
and calculate a current in two simple but generic cases.

1.3.2 Difference of potentials

Let the reservoirs have different potentials but the same temperature

µα = µ0 + eVα , eVα ≪ µ0 ,

Tα = T0 , ∀α .
(1.52)

If |eVα|≪ kBT0 we can expand

fα = f0 − eVα
∂f0
∂E

+O(V 2
α ) ,

where f0 is the Fermi function with a chemical potential µ0 and a temper-
ature T0. Using this expansion in Eq. (1.47) we calculate a current

Iα =
Nr∑

β=1

Gαβ

{
Vβ − Vα

}
, (1.53)

where we introduce the elements of the conductance matrix

Gαβ = G0

∫
dE

(
−∂f0
∂E

)
|Sαβ(E)|2 , (1.54)

with G0 = e2/h the conductance quantum (for spinless electrons). Taking
into account electron spin the conductance quantum should be doubled.

At zero temperature, T0 = 0,

−∂f0
∂E

= δ(E − µ0) ,

and the integration over energy in Eq. (1.54) becomes trivial. In this case
the conductance matrix elements become especially simple [5]
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Gαβ = G0

∣∣∣Sαβ(µ0)
∣∣∣
2
. (1.55)

It is clear that the linear dependence of a current on the potential differ-
ence is kept at a relatively small bias. The corresponding scale is dictated
by the energy dependence of the scattering matrix elements, Sαβ(E). To
illustrate it we calculate a direct current at zero temperature, T0 = 0, but
finite potential, eVα ̸= 0. In this case we cannot expand the Fermi function
in powers of a potential, therefore, Eq. (1.47) becomes

Iα =
G0

e

Nr∑

β=1

µ0+eVβ∫

µ0+eVα

dE |Sαβ(E)|2 . (1.56)

If the quantity Gαβ changes only a little within the energy interval ∼ |eVβ−
eVα| near the Fermi energy µ0 then we can use Sαβ(E) ≈ Sαβ(µ0) in
Eq. (1.56), which results in linear I–V characteristics, Eq. (1.53).

On the other hand if one cannot ignore the energy dependence of Sαβ(E)
then the current becomes a non-linear function of a bias. As a simple
example we consider a sample with two leads (α = 1, 2) whose scattering
properties are governed by the resonance level of a width Γ located at the
energy E1:

|S12(E)|2 =
Γ2

(E − E1)2 + Γ2
. (1.57)

For simplicity suppose that E1 = µ0. Then substituting the equation above
into Eq. (1.56) we find a current

I1 =
e

h
Γ

{
arctan

(
eV2

Γ

)
− arctan

(
eV1

Γ

)}
. (1.58)

If the potentials are small compared to the resonance level width,
|eV1|, |eV2| ≪ Γ, we recover Ohm’s law, I12 = G0

(
V1 − V2

)
. While in

the opposite case, |eV1|, |eV2| ≫ Γ, the current is an essentially non-linear

function of potentials, I1 = (Γ2/h)
(
V −11 −V −12

)
. Therefore, we see that in

this problem the level width Γ is a relevant energy scale.
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1.3.3 Difference of temperatures

The temperature difference also can result in a current. This is the so-called
thermoelectric current. To calculate it we suppose that the reservoirs have
the same potentials but their temperatures are different,

µα = µ0 , ∀α ,

Tα = T0 + Tα, Tα ≪ T0 .
(1.59)

Expanding the Fermi functions in Eq. (1.47) in powers of Tα,

fα = f0 + Tα
∂f0
∂T

+O(T 2
α ) ,

and taking into account that

∂f0
∂T

= −E − µ0

T0

∂f0
∂E

,

we calculate the thermoelectric current flowing into the lead α,

Iα =
Nr∑

β=1

G(T )
αβ

{
Tβ − Tα

}
. (1.60)

Here we have introduced the thermoelectric conductance matrix elements,

G(T )
αβ (E) =

π2e

3h
kBT0

∂ |Sαβ(E)|2

∂E
, (1.61)

and used the following integral

∞∫

0

dE
e

E−µ0
kBT0

(
1 + e

E−µ0
kBT0

)2

(
E − µ0

kBT0

)2

=
π2

3
kBT0 .

From Eq. (1.61) it follows that if the conductance is energy independent,
Gαβ(E) = const, then the thermoelectric conductance (and the thermoelec-
tric current) is zero.
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a

b

Fig. 1.3 A single-channel scatterer. a is the amplitude of an incoming wave, b is the
amplitude of a reflected wave. A zigzag line denotes an electron reservoir.

1.4 Examples

Now we consider several examples to clarify the physical meaning of the
scattering matrix elements. The scattering matrix is a square matrix Nr ×
Nr, where Nr is the number of one-dimensional conducting sub-bands in
each lead, connecting a mesoscopic sample to the reservoirs. Nr is the
number of scattering channels.

1.4.1 Scattering matrix 1 × 1

Such a matrix has only one element, S11, and it describes a sample con-
nected to a single reservoir via a one-dimensional lead, Fig. 1.3. Some-
times such a sample is referred to as a mesoscopic capacitor.3 Unitarity,
Eq. (1.10), requires |S11|2 = 1. Therefore, quite generally the scattering
matrix 1× 1 reads

Ŝ = eiγ , (1.62)

where i is an imaginary unity, γ is real. Scattering in this case is reduced
to the total reflection of an incident wave. Therefore, the element S11 is
the reflection coefficient. Generally speaking any diagonal element, Sαα,
of the scattering matrix of a higher dimension is a reflection coefficient,
since it defines both the amplitude and the phase of a wave returning to
the same reservoir where the incident wave originated. In the case under
consideration (1 × 1) the amplitude of the wave remains the same, while

3More precisely it is one of the capacitor’s plates.



July 13, 2011 11:30 World Scientific Book - 9in x 6in moskalets-ws-book9x6

22 Scattering matrix approach to non-stationary quantum transport

a1

b1

a2

b2

Fig. 1.4 A two-channel scatterer. aα (bα) are the amplitudes of incoming (scattered)
waves, α = 1, 2.

the phase is changed by γ, which is the only quantity encoding information
about the properties of the mesoscopic sample. For instance, if the wave is
reflected by a hard and infinite potential wall then the phase is changed by
γ = π, while if the scatterer is a ring then γ depends on the magnetic flux
threading the ring, and so on.

1.4.2 Scattering matrix 2 × 2

This matrix has in general four complex elements, hence there are eight
real parameters. However, unitarity, Eq. (1.10), imposes four constraints.
As a result there are only four independent parameters. It is convenient to
choose the following independent parameters:

1. R = |S11|2 – a reflection probability.
2. γ – a phase relating to an effective charge, Q, of a scatterer via the

Friedel sum rule, Q = e/(2πi) ln(det Ŝ) = eγ/π [16, 17].
3. θ – a phase characterizing the reflection asymmetry, θ =

i ln (S11/S22) /2.
4. φ – a phase characterizing the transmission asymmetry, φ =

i ln (S12/S21) /2. This phase depends on an external magnetic field or on
an internal magnetic moment of a scatterer.

Therefore, the general expression for the scattering matrix 2×2, describ-
ing a sample connected to two electron reservoirs, Fig. 1.4, can be written
as follows

Ŝ = eiγ

⎛

⎝

√
Re−iθ i

√
1−Re−iφ

i
√
1−Reiφ

√
Reiθ

⎞

⎠ . (1.63)
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Note the reflection probability is the same in both scattering channels,

|S11|2 = |S22|2 = R . (1.64)

The same is valid with respect to the transmission probabilities: they are
independent of the direction of movement,

|S12|2 = |S21|2 . (1.65)

In addition the symmetry condition, Eq. (1.29), restricts the possible
dependence of the parameters chosen for the magnetic field. It is easy to
see that γ(H), R(H), and θ(H) are even functions, while φ(H) is an odd
function, φ(H) = −φ(−H). In particular, if H = 0 then φ = 0 and, cor-
respondingly, the transmission amplitude is independent of the movement
direction,

S12(H = 0) = S21(H = 0) . (1.66)

We stress that Eq. (1.65) holds also in the presence of a magnetic field.
Turning to the transport properties, we see that the conductance, G ≡

G12 = G21, of a sample with two leads is an even function of a magnetic
field [5, 18]

G(H) = G(−H) . (1.67)

As we will show this property holds also for a sample with two quasi-
one-dimensional leads. This symmetry is a consequence of the micro-
reversibility of the quantum-mechanical equations of motion that are valid
in the absence of inelastic interactions breaking the phase coherence.4

1.4.3 Scattering matrix 3 × 3

Such a matrix describes a scatterer connected to three reservoirs, Fig. 1.5.
It has many, namely nine, independent real parameters, which makes it dif-
ficult to find a general expression. Usually the particular expressions for the

4In the non-linear regime and in the presence of electron-electron interactions the cur-
rent through the two terminal sample is not an even function of a magnetic field [19, 20].
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a1

b1

a2

b2

a3

b3

Fig. 1.5 A three-channel scatterer. aα (bα) are amplitudes of incoming (scattered)
waves, α = 1, 2, 3.

scattering matrix elements are used. For instance, following Refs. [21, 22]
one can write a one-parametric scattering matrix

Ŝ =

⎛

⎝
−(a+ b)

√
ϵ
√
ϵ√

ϵ a b√
ϵ b a

⎞

⎠ , (1.68)

where a = (
√
1− 2ϵ− 1)/2, b = (

√
1− 2ϵ+ 1)/2, and the real parameter ϵ

changes within the following interval 0 ≤ ϵ ≤ 0.5. The parameter ϵ char-
acterizes the coupling strength between the lead α = 1 and the scatterer.
At ϵ = 0 this lead is decoupled completely from the scatterer, S11 = −1,
while electrons freely propagate from the lead α = 2 into the lead α = 3
and back, S32 = S23 = 1. The limit ϵ = 0.5 corresponds to a reflectionless
coupling between the sample and the lead α = 1: S11 = 0.

Sometimes, solving the Schrödinger equation for the junction of three
one-dimensional leads, the Griffith boundary conditions are used [23].
These conditions include both the continuity of a wave function and a
current conservation at a crossing point. Then a scattering matrix of the
type given in Eq. (1.68) with parameter ϵ = 4/9 arises. Other values of the
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parameter ϵ, for instance, can be understood as related to the presence of
some tunnel barrier at the crossing point.

It should be noted that in contrast to the two-lead case, see Eq. (1.64), in
the case of three leads, the reflection probabilities Rαα ≡ |Sαα|2, α = 1, 2, 3,
for different scattering channels can be different. Moreover, the current
flowing between any two leads depends not only on the corresponding trans-
mission probability, Tαβ ≡ |Sαβ |2, α ̸= β, but also on the transmission
probabilities to the third lead, Tγα and Tγβ , γ ̸= α,β.

1.4.4 Scatterer with two leads

We will show that the conductance of a mesoscopic sample with two quasi-
one-dimensional leads is an even function of a magnetic field. We saw this
before, see Eq. (1.67), for the case of two one-dimensional leads when the
scattering matrix is a 2 × 2 unitary matrix. Now we generalize this result
onto the case when each lead has several conducting sub-bands [24].

Let one of the leads, say the left, have NL conducting sub-bands while
another one, the right, has NR conducting sub-bands. The total number
of scattering channels is Nr = NL + NR, therefore, the scattering matrix
is an Nr × Nr unitary matrix. It is convenient to number the scattering
channels in such a way that the first NL scattering channels, 1 ≤ α ≤ NL,
correspond to the left lead, while the last NR scattering channels, NL+1 ≤
α ≤ Nr, correspond to the right lead. We assume that the left reservoir has
a potential −V/2 while the right reservoir has a potential V/2. Note for all
the sub-bands belonging to the same lead the corresponding potential Vα

is the same,

Vα =

⎧
⎨

⎩

−V
2 , 1 ≤ α ≤ NL ,

V
2 , NL ≤ α ≤ Nr .

(1.69)

The current, Iα, carried by the electrons of the sub-band α is given by
Eq. (1.53). For simplicity we consider a zero temperature case while the
conclusion remains valid at finite temperatures also. So we write

Iα = G0

Nr∑

β=1

|Sαβ |2
{
Vβ − Vα

}
. (1.70)

Here and below the scattering matrix elements are calculated at E = µ0.
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To calculate the current, IL, flowing within the left lead we need to sum up
the contributions from all the sub-bands belonging to the left lead. These
are sub-bands with numbers from 1 until NL. Therefore, the current IL is

IL =
NL∑

α=1

Iα . (1.71)

Substituting Eq. (1.70) into Eq. (1.71), we find

IL = V G0

NL∑

α=1

Nr∑

β=NL+1

|Sαβ |2 . (1.72)

Calculating in the same way the current IR flowing into the right lead
it is easy to check that IR = −IL, as expected. Note the equations for
the currents IL/R depend only on the transmission probabilities, |Sαβ |2,
between the scattering channels belonging to the different leads. Neither
intra-sub-bands reflections nor inter-sub-bands transitions within the same
lead affect the current.

The conductance, G = IL/V , is

G = G0

NL∑

α=1

Nr∑

β=NL+1

|Sαβ |2 . (1.73)

Our aim is to show that this quantity is an even function of a magnetic
field, G(H) = G(−H). To this end we introduce some generalized reflection
coefficients for the reservoirs

RLL =
NL∑

α=1

NL∑

β=1

|Sαβ |2 , RRR =
Nr∑

α=NL+1

Nr∑

β=NL+1

|Sαβ |2 , (1.74)

and transmission coefficients between the reservoirs

TLR =
NL∑

α=1

Nr∑

β=NL+1

|Sαβ |2 , TRL =
Nr∑

α=NL+1

NL∑

β=1

|Sαβ |2 . (1.75)

These coefficients satisfy the following identities,
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RLL + TLR =
NL∑

α=1

NL∑

β=1

|Sαβ |2 +
NL∑

α=1

Nr∑

β=NL+1

|Sαβ |2

=
NL∑

α=1

Nr∑

β=1

|Sαβ |2 =
NL∑

α=1

1 = NL ,

RLL + TRL =
NL∑

α=1

NL∑

β=1

|Sαβ |2 +
Nr∑

α=NL+1

NL∑

β=1

|Sαβ |2

=
NL∑

β=1

Nr∑

α=1

|Sαβ |2 =
NL∑

β=1

1 = NL ,

where we used the unitarity of the scattering matrix,
Nr∑
α=1

|Sαβ |2 = 1,

Nr∑
β=1

|Sαβ |2 = 1. From the above identities it also follows that

TLR = TRL . (1.76)

Next we use the symmetry conditions, Eq. (1.29), for the scattering matrix
elements in the magnetic field and find

TLR(−H) =
NL∑
α=1

Nr∑
β=NL+1

|Sαβ(−H)|2 =
NL∑
α=1

Nr∑
β=NL+1

|Sβα(H)|2

=
Nr∑

β=NL+1

NL∑
α=1

|Sβα(H)|2 = TRL(H) .

Therefore, we have

TLR(−H) = TRL(H) . (1.77)

Combining together Eqs. (1.76) and (1.77) we finally arrive at the required
relation

TLR = TRL

TLR(−H) = TRL(H)

⎫
⎬

⎭ ⇒ TLR(H) = TLR(−H),

which shows that the conductance, G = G0 TLR, of a sample with two
quasi-one-dimensional leads is an even function of a magnetic field.
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µ1 = µ0 + eV1 µ2 = µ0 + eV2

µ3

I3 = 0

Fig. 1.6 A mesoscopic scatterer with current carrying (1 , 2) and potential (3) leads.

1.4.5 Scatterer with a potential contact

The phase coherent system represents an entity whose properties are some-
times quite sensitive to the measurement procedure. If one attaches an
additional contact, for instance to measure an electric potential inside the
mesoscopic sample, then the current flowing through the sample is changed
[25, 26].5

Let us consider a sample connected to three leads, Fig. 1.6. Two of them,
having different electrochemical potentials, µ1 = µ0+eV1 and µ2 = µ0+eV2,
are used to let a current pass through the system. In contrast the third
lead acts as a potential contact. As for any potential contacts the current
flowing into it is zero, I3 = 0. This condition defines an electrochemical
potential, µ3 = µ0 + eV3, of the third reservoir (which the third lead is
connected to) as a function of the bias between the first and the second
reservoirs, V = V2−V1. One can say that V3 is a potential of a mesoscopic
sample at the point of attachment of the third lead.

Now we calculate the current through the sample. Since I3 = 0 then
I1 = −I2 as for the sample with two leads. Following this analogy we would
say that at a given bias V the current depends only on the probability for
an electron to go from the first lead to the second lead. However, this
is not the case. In the presence of a potential contact (the third lead)
the conductance, G12 = I1/V , in addition depends on the probability for
an electron to be scattered between the current-carrying and the potential
leads,

I1 ̸= G0T12V ⇒ G12 ̸= G0T12 .

5In Ref. [22] and mentioned above there is an ingenious idea of how to treat inelastic
processes within the scattering approach: It consists in attaching to the sample an
additional, fictitious lead. This idea, sometimes essentially modified, see, e.g., Ref. [27],
is widely used in the literature due to its simplicity and clarity.
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Using Eq. (1.53) we write

I1 = G0

(
T12(V2 − V1) + T13(V3 − V1)

)
,

I2 = G0

(
T21(V1 − V2) + T23(V3 − V2)

)
,

I3 = G0

(
T31(V1 − V3) + T32(V2 − V3)

)
.

From the condition I3 = 0 we find

V3 =
T31V1 + T32V2

T31 + T32
.

Note the potential V3 = 0 in the symmetric case, namely, if V1 = −V2

and T31 = T32. Using the equation for V3, we can find the conductance
G12 = I1/(V2 − V1):

G12 = G0

{
T12 +

T13T32

T31 + T32

}
.

In the case of a weak coupling between the potential contact and the sample,
T31, T32 ≪ T12, we recover the result for the sample with two leads, G12 ≈
G0T12.

1.4.6 Scatterer embedded in a ring

We consider two generic cases: (i) a ring with a magnetic flux Φ and (ii) a
ring with scatterer having different transmission amplitudes to the left and
to the right. For simplicity we suppose the scatterer located at x = 0 to be
very thin: Its width w is small compared to the length L of the ring. Then
we can choose a wave function on the ring threaded by the magnetic flux
Φ, Fig. 1.7, as follows

ψ(x) =
(
Aeik(x−L) +Be−ikx

)
ei2π

x
L

Φ
Φ0 , 0 ≤ x < L . (1.78)

The scattering matrix is

Ŝ =

(
S11 S12

S21 S22

)
. (1.79)
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Aeiφ Ae−ikL

Be−ikLeiφ B

Φ

Fig. 1.7 A one-dimensional ring of length L pierced by the magnetic flux Φ with embed-
ded scatterer. A, B are amplitudes of an electron wave function, Eq. (1.78), φ = 2πΦ/Φ0.

The scatterer introduces the following boundary conditions (α = 1 for
x→ L− 0 and α = 2 for x→ +0)

Be−ikLeiφ = AeiφS11 +BS12 ,

(1.80)

Ae−ikL = AeiφS21 +BS22 .

Here we have introduced φ = 2πΦ/Φ0. We see that the magnetic flux can
be fully incorporated into the non-diagonal scattering matrix elements,

S′12 = S12 e
−iφ , S′21 = S21 e

iφ . (1.81)

Therefore, in what follows we will ignore any magnetic flux and only con-
sider the scattering matrix, Eq. (1.79), with S12 → S′12 and S21 → S′21.

1.4.6.1 Spectrum

Now we consider the spectrum of free electrons in a ring with an embedded
scatterer. The dispersion equation is defined by the consistency condition
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for Eq. (1.80). We rewrite this equation as follows (note that we incorpo-
rated φ into S′αβ , α ̸= β)

AS11 −B
(
e−ikL − S′12

)
= 0 ,

(1.82)

A
(
e−ikL − S′21

)
−BS22 = 0 .

The consistency condition means that the corresponding determinant is
zero,

det ≡
(
e−ikL − S′21

)(
e−ikL − S′12

)
− S11S22 = 0 . (1.83)

To solve it we make the following substitution,

S′12 = te−iφ , S′21 = teiφ . (1.84)

Next we divide Eq. (1.83) by S′12S
′
21 = t2 and use the equality, S11S′∗21 =

−S′12S∗22, following from the unitarity of the scattering matrix. Then we
arrive at the following

(
e−ikL

t
− eiφ

)(
e−ikL

t
− e−iφ

)
= − |S22|2

|S′21|2
. (1.85)

Note the amplitude t can be complex.
Further, since the right hand side (RHS) of Eq. (1.85) is definitely real

the left hand side (LHS) of the same equation has to be real as well. After
decoupling the real part from the imaginary part we obtain two equations,

[
Re

(
e−ikL

t

)
− cos(φ)

]2
+ sin2(φ)−

[
Im

(
e−ikL

t

)]2
= − R

T
, (1.86a)

Im

(
e−ikL

t

)[
Re

(
e−ikL

t

)
− cos(φ)

]
= 0 . (1.86b)

Here we introduced |S22|2 = R ≥ 0 and |S′12|2 ≡ |t|2 = T ≥ 0. From
Eq. (1.86a) we conclude that Im

(
e−ikL/t

)
̸= 0 otherwise the LHS of
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Eq. (1.86a) would be positive whereas the RHS is strictly negative. There-
fore, from Eq. (1.86b) we conclude that the dispersion equation is the fol-
lowing

Re

(
e−ikL

t

)
= cos(φ) , (1.87)

as is well known from the literature [28, 29].
One can check directly that Eq. (1.86a) is consistent with Eq. (1.87).

1.4.6.2 Circulating current

The current carried by an electron in the state with a wave function given
by Eq. (1.78) is the following,

I =
e!k
m

(
|A|2 − |B|2

)
. (1.88)

Note the magnetic flux Φ does not enter this equation. Therefore, this
equation can be used regardless of whether there is a magnetic flux through
the ring or the scattering matrix is merely asymmetric, S′12 ̸= S′21.

To calculate the current, Eq. (1.88), we use both the normalization
condition,

L∫

0

dx|ψ|2 ≡ |A|2 + |B|2 = 1 , (1.89)

and one of the equations of the system (1.82), say, the second one,

B = A
e−ikL − S′21

S22
≡ A

e−ikL − teiφ

S22
. (1.90)

Substituting Eqs. (1.89) and (1.90) into Eq. (1.88) we find

I =
e!k
mL

1− |F |2

1 + |F |2 , |F |2 =
T

R

∣∣∣∣
e−ikL

t
− eiφ

∣∣∣∣
2

. (1.91)

Note at φ = 0, i.e., in the symmetric case S′12 = S′21, the current, Eq. (1.91),
is identically zero, because |F |2 = 1. The latter follows from Eqs. (1.86) and
(1.87). The dispersion equation, Eq. (1.87), gives Re

(
e−ikL/t

)
= 1. Then

at φ = 0 we find from Eq. (1.86a),
[
Im
(
e−ikL/t

)]2
= R/T . Therefore,

|F |2 = T
[
Im
(
e−ikL/t

)]2
/R = TR/(TR) = 1.
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If the scatterer is not symmetric, S′12 ̸= S′21 (i.e., φ ̸= 0), then the
current is not zero. Using the dispersion equation (1.87), Re

(
e−ikL/t

)
=

cos(φ), we calculate |F |2

R

T
|F |2 =

[
Im

(
e−ikL

t

)]2
+ sin2(φ)− 2Im

(
e−ikL

t

)
sin(φ) . (1.92)

Then from Eqs.(1.86) we find

[
Im

(
e−ikL

t

)]2
= sin2(φ) +

R

T
.

Substituting the equation above into Eq. (1.92) and then into Eq. (1.91)
we calculate the current

I = − e!k
mL

T sin(φ)

T sin(φ) +
R

sin(φ)− Im
(

e−ikL

t

)
. (1.93)

If we denote t = it0eiχ then the dispersion equation gives: sin(kL +
χ) = −t0 cos(φ). We write a solution as follows: knL + χ =
πn + (−1)n arcsin[t0 cos(φ)]. In this case we calculate, Im

(
e−iknL/t

)
=

− cos(knL+ χ)/t0. Then the current, Eq. (1.93), reads,

In = − e!kn
mL

√
T sin(φ)

√
T sin(φ) +

R√
T sin(φ) + cos(knL+ χ)

, (1.94)

where we use t0 =
√
T .

Note in the equation above φ is either an enclosed magnetic flux or an
asymmetry in transmission to the left and to the right, Eq. (1.84), caused,
for instance, by the internal magnetic moment. In general R and T = 1−R
can depend on kn.
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[21] Büttiker, M., Imry, Y., and Azbel, M. Y. (1984). Quantum oscillations in
one-dimensional normal-metal rings, Phys. Rev. A 30, pp. 1982–1989.
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[52] Büttiker, M. and Landauer, R. (1986). Traversal time for tunneling, IBM
J. Res. Develop. 30, 5, pp. 451–454.

[53] Yafaev, D. R. (1992). Mathematical Scattering Theory (AMS).
[54] de Carvalho, C. A. A. and Nussenzveig, H. M. (2002). Time delay, Physics

Reports 364, 2, pp. 83–174.

 S
ca

tte
rin

g 
M

at
rix

 A
pp

ro
ac

h 
to

 N
on

-S
ta

tio
na

ry
 Q

ua
nt

um
 T

ra
ns

po
rt 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 3
7.

22
9.

18
2.

64
 o

n 
03

/2
8/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



July 13, 2011 11:30 World Scientific Book - 9in x 6in moskalets-ws-book9x6

264 Scattering matrix approach to non-stationary quantum transport

[55] Wang, B., Wang, J., and Guo, H. (2003). Current plateaus of nonadia-
batic charge pump: Multiphoton assisted processes, Phys. Rev. B 68, 15,
p. 155326 (7).

[56] Wagner, M. (1994). Quenching of resonant transmission through an oscil-
lating quantum well, Phys. Rev. B 49, 23, pp. 16544–16547.

[57] Wagner, M. (1995). Photon-assisted transmission through an oscillating
quantum well: A transfer-matrix approach to coherent destruction of tun-
neling, Phys. Rev. A 51, 1, pp. 798–808.

[58] Gutzwiller, M. C. (1971). Periodic orbits and classical quantization condi-
tions, J. Math. Phys. 12, 3, pp. 343–358.

[59] Jalabert, R. A., Baranger, H. U., and Stone, A. D. (1990). Conductance
fluctuations in the ballistic regime: A probe of quantum chaos? Phys. Rev.
Lett. 65, 19, pp. 2442–2445.

[60] Mart́ınez-Mares, M., Lewenkopf, C. H., and Mucciolo, E. R. (2004). Sta-
tistical fluctuations of pumping and rectification currents in quantum dots,
Phys. Rev. B 69, 8, p. 085301 (12).

[61] Rahav, S. and Brouwer, P. (2006). Semiclassical theory of a quantum pump,
Phys. Rev. B 74, 20, p. 205327 (13).

[62] Chung, S.-W. V, Moskalets, M., and Samuelsson, P. (2007). Quantum
pump driven fermionic Mach–Zehnder interferometer, Phys. Rev. B 75,
11, p. 115332 (10).

[63] Yang, M. and Li, S.-S. (2004). Device for charge- and spin-pumped current
generation with temperature-induced enhancement, Phys. Rev. B 70, 19,
p. 195341 (5).

[64] Yang, M. and Li, S.-S. (2005). Level-oscillation-induced pump effect in a
quantum dot with asymmetric constrictions, Phys. Rev. B 71, 12, p. 125307
(4).

[65] Moskalets, M. V. (1999). Persistent current in a one-dimensional ring with
a weak link, Physica E 5, pp. 124–135.

[66] Moskalets, M. V. (1997). Interference phenomena and ballistic transport
in one-dimensional ring, Fiz. Nizk. Temp. 23, 10, pp. 1098–1105 [Sov. Low
Temp. Phys. 23, 10, pp. 824–829].

[67] Moskalets, M. V. (1998). Temperature dependence of the kinetic coefficients
of interference ballistic structures, Zh. Eksp. Teor. Fiz. 114, 5, pp. 1827–
1835 [Sov. Phys. JETP 87, 5, pp. 991–995].

[68] Moskalets, M. V. (1998). Temperature-induced current in a one-dimensional
ballistic ring with contacts, Europhys. Lett. 41, 2, pp. 189–194.

[69] Brouwer, P. W. (1998). Scattering approach to parametric pumping, Phys.
Rev. B 58, 16, pp. R10135–R10138.

[70] Thouless, D. J. (1983). Quantization of particle transport, Phys. Rev. B
27, 10, pp. 6083–6087.

[71] Hekking, F. and Nazarov, Y. V. (1991). Pauli pump for electrons, Phys.
Rev. B 44, 16, pp. 9110–9113.

[72] Spivak, B., Zhou, F., and Beal-Monod, M. T. (1995). Mesoscopic mech-
anisms of the photovoltaic effect and microwave absorption in granular
metals, Phys. Rev. B 51, 19, pp. 13226–13230.

 S
ca

tte
rin

g 
M

at
rix

 A
pp

ro
ac

h 
to

 N
on

-S
ta

tio
na

ry
 Q

ua
nt

um
 T

ra
ns

po
rt 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 3
7.

22
9.

18
2.

64
 o

n 
03

/2
8/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



July 13, 2011 11:30 World Scientific Book - 9in x 6in moskalets-ws-book9x6

Bibliography 265

[73] Stafford, C. A. and Wingreen, N. S. (1996). Resonant photon-assisted tun-
neling through a double quantum dot: An electron pump from spatial Rabi
oscillations, Phys. Rev. Lett. 76, 11, pp. 1916–1919.

[74] Aleiner, I. L. and Andreev, A. V. (1998). Adiabatic charge pumping in
almost open dots, Phys. Rev. Lett. 81, 6, pp. 1286–1289.

[75] Zhou, F., Spivak, B., and Altshuler, B. (1999). Mesoscopic mechanism of
adiabatic charge transport, Phys. Rev. Lett. 82, 3, pp. 608–611.

[76] Wagner, M. and Sols, F. (1999). Subsea electron transport: pumping deep
within the Fermi sea,Phys. Rev. Lett. 83, 21, pp. 4377–4380.

[77] Simon, S. H. (2000). Proposal for a quantum Hall pump, Phys. Rev. B 61,
24, pp. R16327–R16330.

[78] Wei, Y., Wang, J., and Guo, H. (2000). Resonance-assisted parametric
electron pump, Phys. Rev. B 62, 15, pp. 9947–9950.

[79] Avron, J. E., Elgart, A., Graf, G. M., and Sadun, L. (2000). Geome-
try, statistics, and asymptotics of quantum pumps, Phys. Rev. B 62, 16,
pp. R10618–R10621.

[80] Sharma, P. and Chamon, C. (2001). Quantum pump for spin and charge
transport in a Luttinger liquid, Phys. Rev. Lett. 87, 9, p. 096401 (17).

[81] Avron, J. E., Elgart, A., Graf, G. M., and Sadun, L. (2001). Optimal quan-
tum pumps, Phys. Rev. Lett. 87, 23, p. 236601 (4).

[82] Vavilov, M. G., Ambegaokar, V., and Aleiner, I. L. (2001). Charge pump-
ing and photovoltaic effect in open quantum dots, Phys. Rev. B 63, 19,
p. 195313 (12).

[83] Polianski, M. L. and Brouwer, P. W. (2001). Pumped current and voltage
for an adiabatic quantum pump, Phys. Rev. B 64, 7, p. 075304 (6).

[84] Blaauboer, M. and Heller, E. J. (2001). Statistical distribution of Coulomb
blockade peak heights in adiabatically pumped quantum dots, Phys. Rev.
B 64, 24, p. 241301(R) (4).

[85] Tang, C. S. and Chu, C. S. (2001). Nonadiabatic quantum pumping in
mesoscopic nanostructures, Solid State Communications 120, pp. 353–357.

[86] Wang, B., Wang, J., and Guo, H. (2002). Parametric pumping at finite
frequency, Phys. Rev. B 65, 7, p. 073306 (4).

[87] Zhu, S.-L. and Wang, Z. D. (2002). Charge pumping in a quantum wire
driven by a series of local time-periodic potentials, Phys. Rev. B 65, 15,
p. 155313 (5).
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[215] Moskalets, M. and Büttiker, M. (2009). Heat production and current noise
for single- and double-cavity quantum capacitors, Phys. Rev. B 80, 8,
p. 081302 (4).
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non-local Aharonov–Bohm effect from two single-particle emitters, Phys.
Rev. Lett. 103, 7, p. 076804 (4).
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Kontos, T., Plaçais, B., Fève, G., Cavanna, A., and Jin, Y. (2010). Cur-
rent correlations of an on-demand electron source as an evidence of single
particle emission, Phys. Rev. B 82, 20, p. 201309 (4).
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[260] Samuelsson, P., Neder, I., and Büttiker, M. (2009). Reduced and projected
two-particle entanglement at finite temperatures, Phys. Rev. Lett 102, 10,
pp. 106804 (4).

 S
ca

tte
rin

g 
M

at
rix

 A
pp

ro
ac

h 
to

 N
on

-S
ta

tio
na

ry
 Q

ua
nt

um
 T

ra
ns

po
rt 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 3
7.

22
9.

18
2.

64
 o

n 
03

/2
8/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



July 13, 2011 11:30 World Scientific Book - 9in x 6in moskalets-ws-book9x6

276 Scattering matrix approach to non-stationary quantum transport

[261] Neder, I., Ofek, N., Chung, Y., Heiblum, M., Mahalu, D., and Umansky,
V. (2007). Interference between two indistinguishable electrons from inde-
pendent sources, Nature 448, pp. 333–337.

[262] Splettstoesser, J., Samuelsson, P., Moskalets, M., and Büttiker, M. (2010).
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point-like potential, 90

spectral current density, 132
partial, 132

transmission probability, 23
two-particle

correlation function
correlated particles, 236
uncorrelated particles, 235

correlations, 233
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