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Abstract

Nonlinear dynamic aspects of a rectangular simply supported sandwich plate with a central penny-shaped debonded zone subjected

to harmonic loading have been studied by using the finite element analysis within the ABAQUS code. In order to accurately

predict the response of the debonded sandwich plate to harmonic loading, contact-impact and sliding conditions along the damaged

skin-to-core interface were imposed in the model via the penalty contact algorithm in the framework of an implicit integration

scheme. The relevant qualitative parameters such as frequency response curves, phase portraits and Poincaré maps were extracted

from time history signals calculated by the finite element analysis for sandwich plates with and without debonded region. The

results of the both plates were compared, to specify the effects associated with the presence of debond on the forced vibrations

of the sandwich plate. A wide range of forcing frequencies was applied to illustrate various nonlinear responses occurring in the

debonded plate’s dynamics. A considerable influence of contact events within the debonded region on the global dynamic response

of the debonded plate was found out. The predictions performed also showed that the finite element model applied would be useful

for nondestructive evaluation of defects in composite sandwich plates, and for studying dynamic response of such plates to periodic

oscillations.
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1. Introduction

Over the past few decades sandwich panels have become a

popular structural component in many industrial applications

where dynamic loading prevails. The reason thereof is superior

properties of sandwich structures over the conventional metallic

counterparts. In general, a sandwich panel is a special type of

laminates where a layer made of a more flexible and lightweight

material (core) is located between two strength and stiff face

sheets (skins). This structural concept provides high bending

stiffness and strength of the sandwich structure without adding

much weight [1]. However, the bonded interface between too

dissimilar materials of the core and skins is the weakest point

of such structures. Wrong manufacture processes or unfavor-

able service conditions can induce the appearance of a partially

debonded region along the skin-to-core interface. Experimen-

tal observations [2] have shown that the presence of debond in

sandwich panels affects their integrity and reduces their overall

stiffness and strength and, as a consequence, alternates their dy-

namic responses. Therefore, in order to provide reliability and

durability of sandwich structural elements in service, the mod-

elling of dynamic behavior of sandwich panels with an existing

debonded zone is highly required at the design stage.

The dynamic behavior of intact sandwich panels is the sub-

ject of extensive studies, e.g. [3–5] among many others. In con-
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trast to this, papers reported on the dynamic behavior of sand-

wich panels with debond are less presented in the literature.

Apart from the nonlinearities mentioned for the dynamics of

perfectly bonded sandwich beams, plates and shells, the vibra-

tions of those debonded structural elements are accompanied by

additional types of nonlinear phenomena. Contact and impact,

and friction between the detached surfaces of skin and core are

main among others. Even assuming that the influence of non-

linearities others than contact-impact and friction are negligi-

ble, this is true for most of real structures vibrating at a forced

frequency that is far from a resonance frequency, simulations of

the dynamic behavior accounting for contact and friction are a

challenging problem yet in the structural analysis.

One of the possibilities to tackle the dynamic contact-impact

problem arising in cracked structures is the reducing of an un-

derlying complex structure to a simple model with one or sev-

eral number of degrees of freedom [6]. Such spring-mass-

damper models were successful to reveal nonlinear responses

of composite beams with interfacial damage such as sub- and

superharmonic resonances, cascades of period doubling bifur-

cation and the existence of chaotic motion, e.g. it can be found

in [7–10]. Additional studies of complex phenomena in vibro-

impacting systems such as a grazing of periodic orbits, a period-

adding sequence and the coexistence of different attractors for

the same control parameters with complex basins of attraction

can be found in many recent papers, e.g. [11–14]. While the

oscillator models, used in those studies have shed some light

on the nonlinear phenomena of cracked structures they suffer
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from the lack of information about a spatial presentation of

both the deformation modes and distributions of interlaminar

stresses within the cracked region. Thereby continuous models

of vibrating structures damaged by cracks, explicitly describing

the interaction between the detached segments, are still highly

required.

Since a sandwich plate can be referred to a kind of laminate,

the debonded zone within it can be treated as an equivalence

to a delaminated region, hence, analytical, numerical and ex-

perimental approaches developed for studying dynamic delam-

ination effects (see [15] for an overview) can be, in essence,

adapted for the vibration analysis of debonded sandwich plates.

The split spanwise region approach and the constrained model

envisaging the same movement of separated segments for an

across-the-width debonded region was used to find an analyti-

cal solution for the free vibration analysis of a debonded sand-

wich beam with anisotropic composite laminates skins and an

orthotropic honeycomb core in [16]. The authors presented

parametric studies of free vibrations depending on properties of

face sheets, core and debonded zone geometry. In [17] a strip

element method technique was utilized to simulate the propaga-

tion of wave fields in a sandwich plate containing non-bonded

regions located symmetrically above and below the core. For

the sake of simplicity, the problem was reduced to a two di-

mensional beam model and the debonded regions were mod-

elled as a rectangular flaw spreading through the core thick-

ness. The unconstrained debonding model which permits the

overlap between the debonded surfaces of skins and core was

adopted in that research. Based on this approach an analytical

model was developed by Kim and Hwang in [18] to study ef-

fects of the symmetrically located debonds on reduction in the

flexural bending stiffness and natural frequencies of honeycomb

sandwich beams with laminated skins. The results obtained

analytically were, then, compared with experimental observa-

tions. Recently, the same analytical formulation has been ap-

plied and verified through appropriate experiments to evaluate

free vibration characteristics of sandwich beams with a single

and two symmetrical debonds at the interface between the car-

bon fiber reinforced plastic (CFRP) face sheets and honeycomb

core in [19]. A semi-analytical approach relying on the high or-

der sandwich panel theory was developed in [20] for studying

a transient dynamic response of a simply supported sandwich

beam with a single debonded region. A set of nonlinear gov-

erning equations of motion of the debonded beam accounted

for explicit contact conditions at the debonded interface without

using contact mechanics formulations. The system of equations

was numerically solved by using the Newmark-beta method for

integration over time.

The versatility of the finite element method (FEM) for solv-

ing complex topological and multi-physical problems has made

it a popular means in investigations of debonded sandwich pan-

els. In [21] both the FEM analysis and experimental inves-

tigations were performed to obtain natural frequencies and a

steady state response of a honeycomb sandwich plate with alu-

minum skins containing a circular debonded zone at the center.

The developed three-dimensional FE model of the plate used a

hexahedron element with eight nodes. The assumptions of free

debonding model were accepted at the debonded region. Fi-

nite element predictions of vibration and buckling of laminated

sandwich plates with skin-to-core interface layers damaged at

different levels using a refined higher order shear deformation

theory were performed in [22]. The interlaminar imperfec-

tion was modelled by a linear spring layer model implemented

into an elaborated 6-node triangular finite element. Using the

spring model definition, pointwise spring finite elements within

a three-dimensional FE model applied for the free vibration

analysis were introduced into a debonded region of a sandwich

plate to avoid interpenetration between the detached face sheet

and core in [23, 24]. This model allowed authors to evaluate

the influence of debonded zones’ size and form as well as their

location and number on natural frequencies and mode shapes of

sandwich plates with different core types and subjected to dif-

ferent boundary conditions. However, no contact interactions

have been taken into account. Kwon and Lannamann in [25]

have investigated transient dynamics of a debonded sandwich

plate using a FE model where time dependent contact condi-

tions at the damaged interface were simulated. A kinematic

node-to-node frictionless contact algorithm was utilized. A

much more sophisticated FE simulation of the contact-impact

phenomenon taking place between thin detached part and re-

maining beam was carried out in [26]. To obtain correct numer-

ical results in a stationary case of forced motion, authors ap-

plied the surface-to-surface penalty based frictionless contact

algorithm with contact damping within the LS-DYNA code.

A nonlinear dynamic analysis of sandwich plates containing a

post-impact zone involving core fracture and interfacial debond

under impulse and harmonic loads was done in [27]. In those

simulations the surface-to-surface contact definition and kine-

matic contact algorithm within the ABAQUS code were used to

model the contact phenomenon during forced oscillations. Al-

though the global dynamic response of the sandwich plates was

examined, the contact impact phenomenon existing between the

detached skin and core was not investigated in detail in that pa-

per. A detailed analysis and simulation of nonlinear dynam-

ics of a simply supported rectangular sandwich plate with a

penny-shaped debonded zone has been carried out using the

ABAQUS/Explicit code in [28]. While this research provided

a formulation based on the formalism of continuum mechanics

of the underlying elastodynamic problem involving contact and

friction laws, the numerical studies were there rather demon-

strative examples than investigations on the nature of nonlinear

forced dynamics.

Thereby, it follows from the literature search results that

suitable three-dimensional models to simulate the dynamics of

sandwich plates weakened by the partially damaged skin-to-

core interface are still high required for investigating nonlinear

effects occurring in them. In this article, a nonlinear dynamic

behavior of simply supported rectangular sandwich plate with

a central penny-shaped debonded zone subjected to harmonic

excitations is studied. While the spatial discretization of the

debonded sandwich plate is the same as in [28], an alternative

solution technique is utilized within the ABAQUS code in the

current work. In contrast to the explicit solution methodology

used in [28], an implicit direct integration scheme exploiting
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Figure 1: Half of sandwich plate with penny-shaped debonded zone.

the Hilbert-Hughes-Taylor operator with controllable numeri-

cal damping and the Newmark formulae is applied here. Also,

the penalty method and the return mapping algorithm, which

are consistent with the implicit time stepping scheme, are used

for resolving local contact and friction problems, respectively.

Based on this numerical algorithm, nonlinear features exhibited

by the vibrating debonded sandwich plate are investigated in

detail. To detect nonlinearities existing due to the ”breathing”

behavior of the debonded zone, response signals of both the

debonded sandwich plate and the same intact plate predicted

numerically are compared. The estimations of spectral compo-

nents in time history signals as well as comparisons of phase or-

bits, frequency response curves and Poincaré sections are used

to evaluate the nonlinearities appeared.

2. Finite element formulations

2.1. Elastodynamic contact problem

The object of our investigations is a rectangular sandwich

plate containing a central penny-shaped zone of radius R be-

tween the upper skin and the core, as shown in Fig. 1. The

plate is subjected to an external time-dependent load. In gen-

eral, forced dynamics of the debonded sandwich plate is inher-

ently nonlinear, even if small displacements and the simplest

linear constitutive relations are presumed, because the contact

problem between the detached skin and core. The introduction

of friction between the contacting segments is another involved

source of nonlinearity. As a result, an elastodynamic prob-

lem formulated for the debonded sandwich plate consists of a

complete set of equations relating to the initial boundary-value

problem with boundary conditions being a part of the solution.

Mathematical aspects of a general elastodynamic contact prob-

lem are widely discussed and presented in enormous number

of publications on contact mechanics. Thus, in the present pa-

per only a brief formulation of this problem in the extent that is

needed just for basic finite element procedures used is given be-

low. For more details in this topic we refer to books on contact

mechanics, e.g. [29, 30].

Considering the plate as a deformable body occupying a do-

main Ω ∈ R3 at time t ∈ [0,T] with a boundary Γ ∈ R2 such

that Γt ∪ Γu = Γ and Γt ∩ Γu = ∅, where Γt and Γu are parts

of the boundary Γ with prescribed traction t̄ and displacements

ū, respectively, and containing an internal discontinuity on a

boundary Γc (with an open set Ω̃ = Ω \ Γc), we can formulate

the elastodynamic contact problem in context of finite element

approximations as follows:

For given the boundary conditions t̄ on Γh
t , ū on Γh

u, the

initial conditions u0 and v0 in Ω̃h, the distributed body forces b

in Ω̃h and the contact conditions on Γh
c find u(t) ∈ Uh for every

time t ∈ [0,T ] such that for all admissible δu ∈ Uh
0

∫

Ω̃h

δu · ρüdΩ +

∫

Ω̃h

δu · cu̇dΩ +

∫

Ω̃h

{δεεε : σσσ − δu · ρb}dΩ−

∫

Γh
t

δu · t̄dΓ +

∫

Γh
c

(tNδgN + tT · δgT )dΓ = 0

(1)

Here, all the quantities denoted by superscript (h) are finite-

dimensional counterparts of the continuous ones. In doing so,

the total discretized domain Ωh is a union of element subdo-

mains Ωe, i.e. Ωh =
⋃

eΩe. As well, approximated displace-

ment field u and its variations δu within each finite element Ωe

reside in the appropriate finite-dimensional vector spaces:

Uh = {u|u ∈ H1(Ω̃h),u = ū on Γh
u, discontinuous on Γh

c}

Uh
0 = {δu|δu ∈ H

1(Ω̃h), δu = 0 on Γh
u ∪ Γ

h
c}

(2)

Furthermore, in Eq. (1) it is denoted that ρ is the mass density, c

is the linear viscous damping parameter representing the system

material damping, σσσ and εεε are discrete stress and strain fields,

respectively. In order to focus only on nonlinearities resulting

from intermittent contact in the debonded zone, the small strain

tensor εεε = 1
2

(

∇u + (∇u)T
)

and a linear elastic material behavior

defined by Hooke’s law σσσ = C : εεε, where C is the fourth-order

material tensor, are adopted in (1).

Integrands of the last integral in Eq. (1), so-called contact

integral specify constraints that should be imposed on the cur-

rent solution for displacements u and traction σσσ on the contact

boundary Γh
c at an instant of time when contact is active. Since

they deserve a special attention, their definitions are given in

the next subsection.

2.2. Contact interface modelling

The kinematics of points on the contact boundary Γh
c , in terms

of the ”master-slave” contact definition commonly used in the

finite element formulation, is defined by the gap functions gN

and gT which describe relative movements between those points

in normal and tangential directions, respectively. They can be

presented in the forms [29]:

gN = (x− − x̄+) · n̄+ (3)

and

gT = gTα ā
+α with gTα = (x− − x̄+) · ā+α , (4)

where x− is a point of slave surface and x̄+(ξ̄1, ξ̄2) is its or-

thogonal projection on the master surface parameterized by ξα

(α = 1, 2), and n̄+ is the unit vector normal to the master sur-

face and āα (α = 1, 2) are the tangent base vectors at the point

3
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Figure 2: a) Normal contact conditions; and b) tangential contact conditions.

x̄+. In the geometrically linear case, the rate of tangential gap

function at this point can be found as

ġT =
˙̄ξαā+α = ġTα ā

+α with ġTα =
(

ẋ− − ˙̄x+
)

· ā+α = aαβ
˙̄ξβ,

(5)

where aαβ = ā+α · ā
+
β

is the metric tensor at x̄+.

When contact on Γh
c happens, the contact traction tc = σσσ · nc

is transmitted over Γh
c , where nc is an outward unit normal at

a contact point. The vector tc can be decomposed into normal

tN and tangential tT components for each contact pair, i.e. tc =

tN + tT . In turn, the contact traction components are conjugated

to the normal gN and tangential gT gap functions, thus, relations

between them specify the appropriate contact constraints on Γh
c .

The impenetrability constraints (Fig. 2a) can be formulated

in the view of Karush-Kuhn-Tucker conditions as follows:

tN ≤ 0, gN ≥ 0 and tNgN = 0, (6)

where tN is the scalar quantity of the normal contact pressure,

i.e. tN = tN n̄+.

The friction behavior arising due to tangential interactions

has to fulfil the constraints (Fig. 2b) that can be stated in the

form:

‖tT ‖ ≤ τcrit, ‖gT ‖ ≥ 0, (‖tT ‖ − τcrit)‖gT ‖ = 0, (7)

where τcrit is a threshold of tangential contact traction when

a tangential slip occurs. The value of threshold is evaluated

according with a friction law adopted. Throughout this work

we consider the Coulomb friction model that defines τcrit = µtN ,

where µ is the coefficient of friction.

The using an analogy between plasticity and friction leads to

the following form of (7):

ġ
slip

T
= γ̇
∂Φ(tT )

∂tT

= γ̇
tT

‖tT ‖
, (8)

along with loading-unloading conditions in the form:

Φ ≤ 0, γ̇ ≥ 0 and Φγ̇ = 0, (9)

where the potential function is presented by Φ(tT ) = ‖tT ‖ − µtN

with the Euclidean norm ‖tT ‖
2 = aαβtT αtT β as in [30].

2.3. Equations of motion with contact

Following the standard finite element procedure [31], as-

sumed finite element approximations of displacements and their

variations and material derivatives are substituted into the mo-

mentum equality (1). After the known manipulations with its

terms, we can write down the spatially discretized finite element

equations of motion for the elastodymamic contact problem in

hand as follows:

MÜ(t) + CU̇(t) +KU(t) = Fext(U(t)) − Fcont(U(t)) (10)

Herewith the system of nonlinear ordinary differential equa-

tions (10) is subjected to initial conditions on U̇(0) and U(0),

boundary conditions on Γh
u, and impenetrability (6) and friction

(8) and (9) conditions on Γh
c .

In (10) at each instant of time t we define that Ü(t), U̇(t) and

U(t) are the global vectors of unknown accelerations, veloci-

ties and displacements, Fext and Fcont are the global vectors of

the given external and calculated contact forces, and M, C and

K are the global mass, damping and stiffness matrices, respec-

tively. These global vectors and matrices are typically calcu-

lated by the assembly of element level contributions for each

Ωe. In doing so, the global contact force vector Fcont(U) is ex-

pressed as the assembly of contact elemental force contribu-

tions specified for a set of nodes, or points or elements in the

contact interface Γh
c at a certain instant of time. Thus, the set of

active contacts should be known before solving (10). For this

purpose iterative processes referring to as the contact searching

algorithms are applied, [29, 30]. As a result, the nearest neigh-

bor segments potentially coming into contact and projections to

the definitions of both gN and gT are being calculated.

Eq. (10) is nonlinear, because while there are neither geo-

metrical nor material nonlinearities, the contact force vector de-

rived from the contact integral in (1) is highly nonlinear by the

definition. The actual expressions for the contact forces which

are associated with the normal contact pressure and tangential

traction, depend on the contact algorithm adopted. Among of

most commonly used are the penalty method, Lagrange mul-

tiplier method, augmented Lagrangian constraint techniques

and predictor/corrector kinematic algorithms, which must be

consistent with a temporal integration scheme used for solv-

ing (10). On the other hand, the contact traction components

are related to the appropriate gap functions, which in turn are

functions of the approximated displacements and are computed

depending on the contact formulation used on the discretized

boundary Γh
c . In this respect either node-to-node or node-to-

surface or surface-to-surface contact formulations can be uti-

lized in conjunction with defined kinematic assumptions.

The system material damping defined by the matrix C in (10)

is assumed that can be represented by Rayleigh damping:

C = αM + βK (11)

The factors α and β can be determined on the basis of the modal

damping ratio:

ξn =
α

2ωn

+
βωn

2
, (12)

by specifying any desirable ratio for any two selected frequen-

cies ωn of the undamped system with the given M and K.

4



  

2.4. Implicit time-stepping procedure

The semi-discrete system of equations (10) has to be com-

pletely discretized by applying an approximation in the time

domain. Hence, the solution satisfying (10) can only be found

in a finite number of time steps, i.e. [0,T ] ≡
⋃L−1

i=0 [ti, ti+1],

where ti < ti+1, and t0 = 0, tL = T . Let the time increment

be �t = ti+1 − ti and accelerations, velocities and displacements

referring to this time increment are denoted by Üi+1, U̇i+1 and

Ui+1, respectively. Then the totally discretized system of equa-

tions at a certain time ti+1 can be written down as follows:

MÜi+1 + CU̇i+1 +KUi+1 = Fext
i+1 − Fcont

i+1 , (13)

with the initial conditions U0 = Ū and U̇0 = V̄, given dis-

placement boundary conditions and boundary conditions being

calculated due to developing contact.

A temporal integration scheme should be utilized for finding

the solution of the discrete equations (13). In this respect, ei-

ther explicit or implicit integration schemes can be used. The

explicit time-stepping algorithm based on the central difference

operator is well suitable for using in simulations of fast dynamic

transient analyses. However, this method is only conditionally

stable and requires a very small time step and a large number of

such steps for the solution. Therefore, for long-term dynamic

analyses such as forced vibrations under harmonic loading, a

huge number of such steps will be required, as a result, there

will be a significant computational cost and roundoff errors re-

sulting in even numerical blow-ups. Thus, to ensure robustness

and stability of the calculations over long time scales, the use

of an implicit integration technique is often more effective. In

this study we consider the Hilber-Hughes-Taylor temporal inte-

grator [32], which is the second order accurate, unconditionally

stable with controllable numerical damping scheme. Moreover,

this scheme inherits conservation linear and angular momenta

by construction. Thereby, Eq. (13) is replaced by:

MÜi+1 + CU̇i+αB
+KUi+αB

= Fext(ti+αB
) − Fcont(Ui+αB

)

Ui+αB
= αBUi+1 + (1 − αB)Ui

Ui+1 = Ui + �ti+1U̇i +
�t2

2
[(1 − 2β)Üi + 2βÜi+1]

U̇i+1 = U̇i + �t[(1 − γ)Üi + γÜi+1]
(14)

where β = 1
4
(1 − αB)2, γ = 1

2
− αB and − 1

3
� αB � 0, [33].

Control over the amount of numerical damping is provided by

the parameter αB.

The time integrator leads to a nonlinear algebraic problem

which has to be solved at each time step. For this, the Newton-

Raphson iterative method is employed. Hence, the linearized

problem should be solved for each iteration indexed by n as

follows:

∂

∂U

[

MÜ + CU̇ +KU − Fcont(U)
]

Un
i+αB

�U =

Fext(ti+αB
) −MÜ

n

i+1 − CU̇
n

i+αB
+KUn

i+αB
− Fcont(Un

i+αB
)

(15)

with iterations updated by Un+1
i+1 = Un

i+1 + �U.

The system of equations (13) is accompanied by contact and

friction constraints given on Γh
c , then, a local algorithm that is

i+1

i

n

dN

currf |N i+

cont

1

a
�

i+1

Figure 3: Penalty contact constraint algorithm.

consistent with the global implicit time stepping scheme (14)

should be applied to calculations of contact forces at each time

step in (15). In this regard, the penalty parameter method and

the Lagrange multiplier method can be used. Merits and draw-

backs of both methods are theoretically well known and dis-

cussed extensively, e.g. in [29, 30]. It is well known that the

Lagrange multiplier method introduces extra unknowns. Be-

cause of this, to retain the computational efficiency of ongoing

predictions, the penalty contact approach is used for resolving

contact problems in the current investigation.

In this framework, the normal contact pressure is propor-

tional to the depth of penetration, i.e. tN = εN H(gN), where

H(•) is the Heaviside function. The penalty parameter εN is de-

termined so that a penetration is eliminated on the next configu-

ration updated with the actual displacements at ti+1 (see Fig. 3).

A penalty regularization of the frictional problem can be for-

mulated with a tangential penalty parameter εT , i.e. tT = εT gT .

The regularized forms of these interfacial laws are displayed by

the dotted lines in Figs. 2a and b, respectively.

On the consideration of sliding contact, since the frictional

traction depends on the rate of the gap function (8) within the

global time-stepping scheme (14), a local update algorithm for

the current tangential traction tT i+1 is required. The imple-

mentation of the penalized friction law into the implicit HHT

scheme used is accomplished by applying the trial/return map

algorithm to (8) and (9) discretized with the backward Euler

method [31]. The algorithm is doing the following. First,

within the time step ti+1 both the normal gap gN i+1 and the in-

crement of the tangential gap �gT i+1 is calculated based on the

current kinematic state Ui+1. Then, a trial state is defined as

follows

ttrial
T i+1 = tT i + εT�gT i+1 (16)

The slip potential in terms of the trial traction is calculated as

Φtrial
i+1 = ‖t

trial
T i+1‖ − µtN i+1 (17)

Thereafter, the slip condition is checked. If Φtrial
i+1
≤ 0 no slip

takes place, i.e. tT i+1 = ttrial
T i+1

and gT i+1 =
1
εT

tT i+1. In case of

Φtrial
i+1
> 0 the return mapping is performed as follows:

tT i+1 = µtN i+1

ttrial
T i+1

‖ttrial
T i+1
‖

gT i+1 = gT i +
1

εT
Φtrial

i+1

ttrial
T i+1

‖ttrial
T i+1
‖

(18)
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It is should be noted that in calculations of the contact stiff-

ness arising from the linearized part of (15), linearization of the

corresponding terms in the contact integral, consistent with the

time stepping algorithm applied is performed. The the contact

force vector in the right side of (15) is evaluated using the nu-

merical integration in a finite number of quadrature points.

2.5. Finite element model

The finite element model used in simulations of dynamics

of a simply supported rectangular sandwich plate with a circu-

lar debonded zone at the center of the skin-to-core interface is

based on the FE model that was developed in [28]. Some fea-

tures of meshing and differences between the two FE models

are briefly presented in this subsection.

In Fig. 4a the finite element model of the debonded sandwich

plate developed with the ABAQUS code is shown. Reduced

integrated 8-node continuum shell finite elements SC8R with

displacement degrees of freedom only are used for discretiza-

tion of the skins. These elements enable to model both thin and

thick plate/shell problems. In the case of skins made of lami-

nated composites, the continuum shell elements are stacked to

provide a more refined through-the-thickness response.

The core of the sandwich plate is modelled with first-order

reduced integrated 8-node continuum solid ”brick” elements

C3D8R which are directly connected to the continuum shell el-

ements representing the skins. To avoid the hour-glassing prob-

lem in these elements, the ”hourglass stiffness” method avail-

able in ABAQUS is used. More details concerning the finite

elements involved can be found in [34].

After preliminary convergence tests concerning the refine-

ment of the FE spatial discretization from a viewpoint of both

the solution accuracy and the computational cost, the general

mesh of the sandwich plate contained one layer of the contin-

uum shell elements for each skin and ten layers of the brick

elements for the core through the plate thickness. The mesh

was generated by partition of the total model onto several parts,

which are connected with each other through share nodes. The

penny-shaped debonded zone was presented by an actual small

gap between the finite elements of the upper skin and the core.

The mesh density was higher in the central part of the plate,

where the contact-impact phenomenon is expected to be mod-

elled and it was rougher for the remaining part of the plate. No

artificial adjustment of either the material or geometrical prop-

erties was made at the debonded region to ensure as close as

possible a physically real case.

The contact surfaces between the skin and the core are

formed by faces of the underlying finite elements. Since the

surfaces coming into contact have high dissimilar mechani-

cal properties, a pure master-slave contact pair formulation in

ABAQUS was applied, Fig. 4b. The small-sliding contact track-

ing algorithm was utilized for the contacting surfaces because

small oscillations are presumed. The ”hard” contact model

available in the code implying no penetration at each constraint

location and no contact pressure transmission unless the sur-

faces are in contact was accepted to model normal interac-

tions between the contacting surfaces. The isotropic Coulomb

friction model specified the contact behavior of these surfaces

Table 1: Material properties of the foam-cored sandwich plate.

Components Elastic constants

Foam Core Ec = 85 MPa, Gc = 30 MPa, ρc = 52 kgm−3

Face sheet Exx = Ezz = 19.3 GPa, Eyy = 3.48 GPa,

Gzx = 7.7 GPa, Gxy = Gyz = 1.65 GPa,

ρ = 1650 kgm−3

in tangential directions. Unlike the finite model developed in

[28], in the present model, the contact constraints were imposed

and the contact forces were calculated by using the penalty

contact enforcement method described shortly in Section 2.4.

This contact method is consistent with the implicit solver of

ABAQUS/Standard, which uses the HHT integration scheme

for a general dynamic analysis and the backward difference ap-

proach for a friction prediction, [34].

3. Numerical results

One configuration of the sandwich plate containing a penny-

shaped debonded zone is used throughout numerical predic-

tions in what follows. The rectangular sandwich plate of length

a = 270 mm and width b = 180 mm consisting of a 50 mm-

thick WF51 foam core and 2.4 mm-thick GFRP skins is simply

supported along all four edges. The radius of central debonded

zone is 20 mm. The mechanical properties of constituent mate-

rials of the sandwich plate are taken as in [28] and are listed in

Table 1.

First, the modal analysis of the debonded sandwich plate is

needed for evaluating its natural frequencies. However, this

analysis does not take into account contact within the debonded

region. To keep the finite element model capacities in mod-

elling the contact and friction phenomena, free decay oscilla-

tions of the debonded sandwich plate after an impulse loading

are simulated and, then, its natural frequencies are extracted

from corresponding transient time signals.

3.1. Impulsive loading

The debonded sandwich plate is subjected to an impulse con-

centrated force at the central point of its lower undamaged skin.

The duration of the applied force is taken much shorter than the

analysis time (one tenth of the analysis time step), i.e.

F(t) =

{

F0, 0 ≤ t ≤ t∗
0, t > t∗

with the amplitude of F0 = 10 kN and the time t∗ = 1 ms. It

should be noted that the force amplitude is chosen so that nei-

ther geometrical nor material nonlinearities are activated. For

this purpose an overall deflection and stress states within the

both skins and the lightweight core of the sandwich plate were

examined under the applied force in preliminary studies that are

not presented in the current paper, but are the same as in [35].

The dynamic transient analysis accounting for the con-

tact behavior between the detached layers is performed with

ABAQUS/Explicit implementing the computational algorithms
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Figure 4: The debonded sandwich plate with penny-shaped debonded zone: a) 3-D FE model; and b) details of modelling at the debonded zone.
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Figure 5: Transient dynamic response of the intact and debonded sandwich plates in: a)time domain; and b) frequency domain.

described in [28]. The transient displacement time signals of

the sandwich plates with and without debond are calculated at

the central point N 1 (see Fig. 4a) and are displayed in Fig. 5a.

One can see that the presence of debond increases the ampli-

tude, but decreases the frequency of free decay vibrations of

the sandwich plate. This result is attributed to decreasing the

plate stiffness due to the debond existence.

The time histories calculated are processed by using the

Fast Fourier Transform (FFT) within the Matlab software en-

vironment [36] to convert them into frequency domain data.

The comparisons between appropriate power spectra of the

debonded and the same intact sandwich plates are shown in

Fig. 5b, where only several peaks are signed as examples.

In Table 2, several natural frequencies extracted from the

spectral signals of the intact and debonded plates are listed.

It follows from Table 2, all the natural frequencies tend to

decrease with increasing the number of mode, but this effect

does not exhibit a monotonic character. The amount of fre-

quency drop is dependent on the mode of interest, as seen in

Table 2: Natural frequencies (Hz) of the intact sandwich plate and the sandwich

plate with the 10%-sized debond.

Intact Debonded Intact Debonded

1074.2 957.03 2832.0 2675.8

1562.5 1308.6 2968.8 2792.9

1757.8 1406.3 3144.5 2910.2

1953.1 1621.1 3261.7 3007.8

2187.5 1953.1 3378.9 3281.3

2285.2 2109.4 3496.1 3359.4

2578.1 2382.8 3750.0 3593.8

2675.8 2500.0 3808.6 3785.1
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Fig. 6. More detailed discussions concerning the influence of

the debonded zone on natural frequencies and associated mode

shapes of sandwich plates can be found in [23, 24].

0%
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15%

20%

Frequency shift

Mode Number

Figure 6: Shift in natural frequencies between the intact and debonded sand-

wich plates.

One can see from Fig. 5b that the frequency signal of the

debonded plate is characterized by wider peaks at the resonance

frequencies in comparison with those of the intact plate. This

indicates higher material damping in the debonded sandwich

plate. Besides, additional peaks both before the fundamen-

tal frequency and in the domain of high frequencies can evi-

dently be observed in the frequency content of the debonded

plate. This is a result of superimposing between vibration

waves caused by the external impulsive load and generated by

contact interactions within the debonded region. Thus, the in-

fluence of the presence of debond on the dynamic transient re-

sponse of sandwich plate is significant.

3.2. Harmonic loading

Because long-term dynamical responses are of concern,

rather than particular transient events, the harmonically forced

vibrations of the debonded sandwich plate are investigated fur-

ther. The simulations are carried out with finite element model

developed in ABAQUS/Standard that incorporates the implicit

integration algorithm for a general dynamic analysis with con-

tact described in Section 2. The sandwich plate with the circu-

lar debonded zone is excited with a prescribed harmonic trans-

verse displacement u(t) = u0 sin(Ωt) applied at the central

point of lower perfectly attached skin. The dynamic response

of the plate is investigated for the fixed excitation amplitude u0

equal to 5 mm by varying the excitation frequency Ω. Different

driving frequencies are investigated. They were selected so that

a harmonic load applied could be able to highlight some spe-

cific dynamic phenomena occurring in the sandwich plate. For

the convenience’s sake, the driving frequencies are presented

by a fraction of the fundamental frequency of the same intact

sandwich plate f0, i.e. η = Ω/ f0.

In simulations, because no experimental data concerning the

energy dissipation phenomenon is known in the plate, the arti-

ficial viscous damping and friction are included into the model

in such a way that the behavior of plate would be simulated

to some extent of reality, but without hard numerical difficul-

ties inflicted by these phenomena. In this respect, the modal

damping ratio was assumed equal to 1% of the critical value

throughout this study, hence, the appropriate damping coeffi-

cients of the Rayleigh damping matrix C in (11) were being

calculated for each frequency range of interest. For frictional

contact the coefficient of friction was accepted equal to µ = 0.1

that is a lower boundary of the range of friction coefficients for

plastic-plastic material combinations.

It is worth to notice that all time history plots, presented be-

low to indicate the degree of repeatability of forced dynamic

responses being investigated are calculated for transverse dis-

placements and velocities at the central point N 1 (see Fig. 4a)

and at the two points N 2 and N 3 collocated on the contact-

ing surfaces of core and upper skin in the debonded zone (see

Fig. 4b). The former representative point is chosen to illustrate

the global dynamics of the plate, while the latter points speci-

fying a contact pair are defined to display a complex response

of the ”breathing” debonded zone in detail. The time signals

are shown in a time range, when the steady state motion of a

vibrating plate has been achieved. Besides, data computed in

each run are stored for a one-tenth part of a current excitation

period. In doing so, the data are truncated so that each time

history record contains an exact integer number of excitation

periods, thus minimizing leakage and avoiding the need to use

windows in the FFT. As well, each state space trajectory (or

phase portrait) combining displacement and velocity time his-

tories is made up of a time interval, which includes at least of

20 periods of excitation after ceasing the transient motion. And

if it is necessary to obtain a deeper insight into the type of mo-

tion being considered, those phase space data are stroboscop-

ically sampled every forcing period of excitation to construct

Poincaré sections.

The frequency ratio of 1/2 leading to the driving frequency

about of 500 Hz is firstly considered for the displacement load.

Figs. 7a and d present deflection time histories of the sandwich

plates with and without debond at the point N 1 and the de-

tached skin and the remaining part at the points N 2 and N 3 in

the debonded plate. Their appropriate phase portraits are pre-

sented in Figs. 7b and e, respectively. Analyzing these plots,

one can see that a periodic motion with frequency, which is

the same as the excitation frequency, without contact between

the debonded parts occurs in the debonded sandwich plate. It

means that for the given debonded zone size and the excita-

tion level, inertial forces in the plate are too low to overcome

the clearance existing between the detached skin and the core,

i.e. these parts are not in contact at the central points of the

debonded zone. However, very small distortions, visible in the

time responses and the phase portraits of the detached skin and

remaining plate reflect the existence of a light contact between

them. The contact takes place at some points nearby to the

boundary of the debonded zone. This fact was visualized by

the animation of the deformation time history of plate within

the post-processor of the ABAQUS code (not presented here).

It was found out that a source of this contact is a rotation of the

thinner detached skin. The appearance of additional odd har-

monics with small energy contributions in the frequency spec-

trum of the debonded sandwich plate is an evidence of such

light contacts, Figs. 7c and f. A unit decibel (dB) is used to

see easily these small signal components in the presence of
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Figure 7: Dynamic response at Ω = 500 Hz: a) displacement time history, b) phase portrait and c) frequency spectrum of the both debonded and intact plates; d)

displacement time history, e) phase portrait and f) frequency spectrum of the detached skin and the remaining plate.

the large component corresponding to the excitation frequency.

Thus, as expected, the use of the three-dimensional model al-

lows one to more accurately simulate and more precisely ana-

lyze the dynamics of the debonded plate.

At the kept excitation amplitude, the contact behavior be-

tween the detached segments of the debonded sandwich plate

was noticed for the frequency ratio of 3/4 that corresponds to

the driving frequency about of 800 Hz. A comparison of time

histories, phase portraits and power spectra of the sandwich

plates with and without debond are shown in Figs. 8a-f at the

point N 1 and points N 2 and N 3 mentioned earlier. It fol-

lows from these plots that the debonded sandwich plate has a

periodic motion with one contact at each cycle of the excita-

tion. One can see in Figs. 8a and b that the amplitudes of the

debonded plate’s histories are larger than those in the time sig-

nals of the same intact plate. As well, the amplitude of the

detached skin’s displacement is larger compared to the ampli-

tude of the remaining plate’s displacement, Fig. 8d. In doing

so, the both plates as well as the debonded parts oscillate in the

same phase, while the waveforms of displacement signals in the

debonded plate show an asymmetry associated with ”breath-

ing” the debond. As seen in Fig. 8d, the detached parts coming

into contact once every excitation period remain in contact rel-

atively long. It means that both impact-like and slipping inter-

actions contribute to the energy loss during contact. Thus, the

contact can be thought as a phenomenon in which exists two

regimes: the ”chattering regime”, which is caused by impact-

like events, where the detached surfaces bounce off each other

with enough energy to hit themselves again and the ”normal

force controlled regime”, where the detached segments lose suf-

ficient energy during the impact to stay in continuous frictional

contact, as have been presented in [10, 13] based on oscillator

models. Moreover, the periodically colliding detached surfaces

produce harmonics that are integer multiple of the forcing fre-

quency, as can be seen in the debonded plate’s frequency con-

tent in Fig. 8c. Therewith, the detached skin and the remaining

plate reveal different energy distributions in their spectral con-

tents, Fig. 8f. The greatest amount of vibrational energy is pre-

dominantly localized at the higher frequencies in the frequency

spectrum of the remaining plate, while the lower frequencies

have the greatest energy in the frequency signal of the detached

skin. Seemingly the remaining part comes across the detached

skin during oscillations, thereby, it experiences the excitations

produced by both the contact interactions and the external load.

When the frequency ratio is increased up to η = 2, i.e. the

driving frequency is about of 2000 Hz, the qualitative character

of the debonded plate’s response is changed from the previous

cases noticeably. In general, as indicated by the displacement

time histories, phase portraits and frequency spectra in Fig. 9a-

f, the response of the debonded plate is a period-one motion.

However, in this case the oscillations of the debonded and in-

tact plates are not coincident in the phase, Fig. 9a. Herewith, the

displacement amplitude of the debonded plate and, as a conse-

quence, the amplitude of its velocity exceed those amplitudes

of the intact plate in several times. This can clearly be seen

by tracking the appropriate phase orbits of the both plates in

Fig. 9b. Also, the detached skin and the remaining part oscil-

late in the anti-phase to each other, as displayed in Fig. 9d. As a

result, another type of contact than it was observed earlier takes

place between them. One can see from Fig. 9d, although the

detached surfaces continue to come into contact once per cy-

cle of the excitation, but now the impact-like contact prevails in
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Figure 8: Dynamic response at Ω = 800 Hz: a) displacement time history, b) phase portrait and c) frequency spectrum of the both debonded and intact plates; d)

displacement time history, e) phase portrait and f) frequency spectrum of the detached skin and the remaining plate.
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Figure 9: Dynamic response at Ω = 2000 Hz: a) displacement time history, b) phase portrait and c) frequency spectrum of the both debonded and intact plates; d)

displacement time history, e) phase portrait and f) frequency spectrum of the detached skin and the remaining plate.
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their interactions. The near-vertical portion of the correspond-

ing phase portrait in Fig. 9e depicts such impact-like contacts.

Moreover, both the inward bend in the phase portrait in Fig. 9e

and the large amplitudes of high frequencies in the frequency

spectrum in Fig. 9f for the remaining part have their sources in

those impacts as well.

With further increasing the driving frequency up to η = 3, i.e.

about 3000 Hz, a period-two motion has been detected. It fol-

lows from the analysis of graphs in Figs. 10a-f. Figs. 10c and f

display that the frequency components in the spectral signals of

the debonded plate occur at both the harmonics and exactly half

the harmonics of the excitation frequency. It means that new

frequencies generated due to contact events in the debonded re-

gion are fractional multiple, namely one-second of the forcing

frequency. Because of phase-locking the global dynamic re-

sponse of the debonded plate becomes the period-two motion.

Therewith, the displacement amplitude of the debonded plate’s

signal is larger significantly than that amplitude of the intact

plate’s signal, as depicted in Fig. 10a. This subharmonic char-

acter of the motion is borne out by the two points in the Poincaré

section in Fig. 10b, as well. In Fig. 10d the displacement time

histories of each debonded part are demonstrated. It is clearly

seen that the detached skin and the remaining part come into

contact twice per cycle of the excitation. Their state space por-

traits in Fig. 10e display that such contacts involve both the

”chattering regime” and the ”normal force control regime”. It

is worthily for noticing that similar subharmonic motions for

a cracked beam predicted using a three-dimensional finite ele-

ment model was recently reported in [37].

The interesting behavior of the debonded sandwich plate,

distinctive from all the cases revealed here is obtained at the

frequency ratio η = 4, i.e. about of 4000 Hz. As shown in

Figs. 11a-c, the debonded sandwich plate has a periodic-one

motion differing significantly from the harmonic oscillations of

the intact plate. One can clearly see that there is a phase shift

between the time signals of the both plates. The phase trajec-

tory of the debonded plate is not an ellipse and is markedly

larger than that of the intact plate. As well, the frequency spec-

trum of the debonded plate contains harmonics of the excitation

frequency. The reason of this response of the debonded plate

was found by tracking the time history displacements and ve-

locities at different points of the debonded zone. It results from

Figs. 11d and e, while the debonded parts have lost the contact

at the central points N 2 and N 3 during the oscillations, they

are in contact at other points. As an example the plate response

is presented at the points N 4 and N 5 (see Fig. 4b) that are lo-

cated about half the debonded zone’s radius R from the center.

At these points two contacts each excitation cycle take place,

Fig. 11e. The contacts are characterized by both impact-like

and sliding interactions, as seen in the appropriate phase por-

traits in Fig. 11f. Therewith, high order frequency components

are prevail in the frequency spectrum of the remaining plate as

indicated by a lobe on the phase trajectory. This described case

confirms again the need of the three-dimensional presentation

of the debonded plate’s dynamic response to properly model the

complex nonlinear behavior.

At the frequency ratio η = 5 (or about 5000 Hz for the driving

frequency), the numerical predictions showed a quasi-periodic

dynamics of the debonded sandwich plate. This result follows

from the plots in Figs. 12a-f. The frequency spectrum shown

in Fig. 12a along with the peaks at the excitation frequency and

its harmonics exhibits sidebands consisting of at least two com-

ponents well visible on the frequency-axis. These frequencies

are incommensurate with the excitation frequency. As shown

in Fig. 12b, the phase plane contains several forms of the state

space trajectories for the debonded plate motion. Moreover, the

Poincaré map of the motion in Fig. 12c gives a closed curve.

Figs. 12d-f clearly display that there exist different kinds of

contact between the detached surfaces of the plate. The con-

tacts repeat at some time interval during the plate oscillations.

Within that interval, some of contacts are strongly impact-like

that are observed by near vertical portions of the phase orbits,

but other ones are with a some extent of sliding, Fig. 12e. As a

result of such almost regular contacts within the debonded zone,

newly created frequencies are incommensurate with the excita-

tion frequency that result in the global quasi-periodic motion

observed in this case.

The last predictions were carried out at the frequency ratio

of 7, that leads to the driving frequency about of 7000 Hz.

Data computed for this case are presented in Figs. 13a-f. Un-

like the intact plate the evolution with time of the deflection of

debonded plate is not regular, as given in Fig. 13a. Moreover,

the state space trajectory of the debonded plate in the phase

plane does not repeat itself ever again for excitation periods,

Fig. 13b. A set of points in the Poincaré section in Fig. 13c

corresponds to irregular variations of the motion from one ex-

citation cycle to another one. From the frequency response

curve in Fig. 13d one can see that the spectral spikes, which

are evident in the response spectrum, are surrounded by a dis-

tribution of frequencies having the character of a broadband,

i.e. some amount of the vibrational energy is localized within

the band around. Successive impacts between the remaining

plate part and the detached skin are not regular in accordance

with plots presented by their phase orbits and Poincaré sec-

tions in Figs. 13e and f, respectively. Thereby, the oscilla-

tions of the debonded plate at the given driving frequency looks

like a chaotic motion. To verify this assumption, the largest

Lyapunov exponent was calculated for the space trajectory of

debonded plate using the methodology proposed by Rosenstein

et al. within the TISEAN package [38]. In assumed chaotic

regime the dominating Lyapunov exponent had a statistically

significant value of about 0.16. This positive Lyapunov ex-

ponent clearly indicates the chaotic behavior in the debonded

sandwich plate.

4. Conclusions

Dynamics of the debonded foam-cored sandwich plate sub-

jected to both impulse and harmonic loads is studied using

the finite element analysis with taking into account intermit-

tent contact between the detached segments within the dam-

aged skin-to-core interface. The finite element model proposed

revealed a wide range of behaviors appearing in the debonded

sandwich plate being simulated. The numerical results showed
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Figure 10: Dynamic response at Ω = 3000 Hz: a) displacement time history, b) Poincaré section and c) frequency content of the both debonded and intact plates; d)

displacement time history, e) phase portrait and f)frequency content of the detached skin and the remaining plate.
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Figure 11: Dynamic response at Ω = 4000 Hz: a) displacement time history, b) phase portrait and c) frequency content of the both debonded and intact plates; d)

displacement time history at the points N 2 and N 3, e) displacement time history at the points N 4 and N 5 and f) frequency content of the detached skin and the

remaining plate.
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Figure 12: Dynamic response atΩ = 5000 Hz: a) frequency content, b) phase portrait and c) Poincaré section of the both debonded and intact plates; d) displacement

time history, e) phase portrait and f) Poincaré section of the detached skin and the remaining plate.
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Figure 13: Dynamic response atΩ = 6000 Hz: a) frequency content, b) phase portrait and c) Poincaré section of the both debonded and intact plates; d) displacement

time history, e) phase portrait and f) Poincaré section of the detached skin and the remaining plate.

13



  

that both an impulse response and a steady-state response of

the debonded sandwich plate is considerably affected by the

debond. It was found out that contacts arising within the

debonded zone are responsible for the extent of nonlinearity of

the plate’s structural responses observed. As a result of those

contacts, the frequency spectra of the both transient and steady-

state vibrations revealed additional frequency peaks in the fre-

quency domain. A redistribution of the vibrational energy to

the sub- and super-harmonics seems the main signature of the

forced dynamics of debonded plates.

Moreover, the typical assumption that if excitations are har-

monic, then the response is also harmonic, commonly used in

linear system is no longer valid for the dynamic response of

the debonded sandwich plate. Instead, a steady-state response

of such systems should be studied based on the general dy-

namic analysis with a periodic loading function. The driving

frequency was considered as a dominant factor that governs by

the dynamics of the debonded plate subjected to harmonic load-

ing. The numerical predictions were carried out at the excita-

tion frequencies between one-half and seven times of the fun-

damental frequency. Within the mentioned frequency interval,

numerically predicted behaviors of the debonded plate encom-

passed a wide range of motions such as harmonic with the fre-

quency equal to the excitation frequency, periodic with period-

one and period-two, quasi-harmonic, and chaotic. Super-

harmonics were always observed in the frequency spectrum of

the debonded plate, sometimes they were even the strongest

harmonics in the spectrum. The appearance of period-two,

quasi-harmonic, chaotic motions is explained as a result of the

intermittent contact between the detached segments that enables

to produce new frequencies. The newly created frequencies

could be either commensurate or incommensurate with the ex-

citation frequency. Phase plains and Poincaré sections obtained

from the numerical predictions were used to analyze those sys-

tem dynamic behaviors. One can notice that the FE model pro-

posed here can be used as a useful research tool for investi-

gations of a non-linear dynamics of sandwich plates including

aspects of damage identification.
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