ДИФФУЗИЯ ОДНОЗАРЯДНЫХ ИОНОВ В ЛЁГКОЙ И ТЯЖЕЛОЙ ВОДЕ ПРИ 298,15 К

Булавин В.И.¹, Вьюнник И.Н.², Крамаренко А.В.¹., Русинов А.И.¹, Волобуев М.Н.¹

¹Национальный технический университет "Харьковский политехнический институт",

² Харьковский национальный университет имени В. Н. Каразина, г. Харьков

В настоящей работе с использованием авторской методики [1] были рассчитаны коэффициенты диффузии (D_i^0) и микроскопические характеристики диффузионного смещения (МХДС) (длина (\overline{d}_i) , время (τ_i) , скорость (V_i)) для 11 однозарядных ионов в лёгкой (H₂O) и тяжелой (D₂O) воде на основании литературных данных по подвижности этих ионов при 298,15 К [2]. В табл. 1 представлены рассчитанные нами величины D_i^0 и МХДС ионов в виде отношения значений каждого из параметров в лёгкой и тяжелой воде. Здесь r_i – структурный радиус иона.

Таблица 1

Параметр	Отношение параметра иона в H_2O к этому же параметру в D_2O										
	(изотопный эффект)										
	Li ⁺	Na ⁺	K ⁺	Cs ⁺	Me ₄ N ⁺	Et ₄ N ⁺	Pr ₄ N ⁺	Bu ₄ N ⁺	Cl ⁻	Br ⁻	I ⁻
D_i^0 ·	1,233	1,204	1,198	1,196	1,226	1,237	1,242	1,238	1,216	1,208	1,204
\overline{d}_i	0,992	1,017	1,025	1,026	0,997	0,993	0,985	0,992	1,008	1,009	1,026
$(\overline{d}_i - r_i)$	0,988	1,037	0,727	0,939	0,963	0,966	0,959	0,980	0,984	0,988	0,971
$ au_i$	0,797	0,856	0,875	0,878	0,806	0,799	0,783	0,789	0,837	0,846	0,873
V_{i}	1,238	1,186	1,172	1,167	1,236	1,248	1,244	1,265	1,203	1,196	1,174

Из данных табл. 1 следует, что изотопный эффект более существенно проявляется для величин $D_i^0 \cdot$ и V_i . При этом коэффициент диффузии в H_2O в \sim 1,2 раза больше, чем в D_2O . Время же диффузионного смещения ионов (τ_i) , наоборот, в D_2O в \sim 1,2 раза больше, чем в H_2O . Отношения параметров $(\bar{d}_i - r_i)$ и \bar{d}_i близки к 1 (кроме K^+), что указывает на ослабление изотопного эффекта. Известно [1], что параметр $(d-r_i)$ является мерой ближней сольватации. В табл. 2 приведены результаты расчета знака параметра $(d-r_i)$ для этих ионов в H_2O и D_2O . Знак «+» соответствует положительной, знак «-» – отрицательной сольватации.

Таблица 2

Р-ритель	Li ⁺	Na ⁺	K^+	Cs ⁺	Me ₄ N ⁺	Et ₄ N ⁺	Pr ₄ N ⁺	Bu ₄ N ⁺	Cl ⁻	Br ⁻	I^-
$H_2O; D_2O$	+	+	_	_	+	+	+	+	_	_	_

Литература:

- 1.Bulavin V.I., V'yunyk I.M., Lazareva Ya.I. Diffusion and microscopic characteristics of singly charged ion transfer in extremely diluted aqueous solutions. *Ukrainian Journal of Physics*. 2017. Vol. 62, N = 9. P. 769–778.
- 2. Swain C.G., Evans D.F. Conductance of ions in light and heavy water. *Journal of the American chemical society.* 1966. Vol. 19, No 3. P. 383–390.