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We examine the scattering properties of a slowly and periodically driven mesoscopic sample using
the Floquet function approach. One might expect that at sufficiently low driving frequencies it
is only the frozen scattering matrix which is important. The frozen scattering matrix reflects the
properties of the sample at a given instant of time. Indeed many aspects of adiabatic scattering can
be described in terms of the frozen scattering matrix. However, we demonstrate that the Floquet
scattering matrix, to first order in the driving frequency, is determined by an additional matrix
which reflects the fact that the scatterer is time-dependent. This low frequency irreducible part of
the Floquet matrix has symmetry properties with respect to time and/or a magnetic field direction
reversal opposite to that of the frozen scattering matrix. We investigate the quantum rectification
properties of a pump which additionally is subject to an external dc voltage. We split the dc current
flowing through the pump into several parts with well defined properties with respect to a magnetic
field and/or an applied voltage inversion.

PACS numbers: 72.10.-d, 73.23.-b, 73.40.Ei

I. INTRODUCTION

The interplay of quantum mechanical interference with
quantized energy exchange results in a quantum pump ef-
fect which is investigated intensively both experimentally1−5

and theoretically.6−36 This phenomenon being promising for
manipulating and controlling the passage of electrons through
mesoscopic circuits is of fundamental interest. Adiabatic driv-
ing involves only low energy exchange and avoids excitations
into inelastic channels which degrade the quantum proper-
ties of the system. In this work we investigate the magnetic
symmetry properties of the dc-current of a quantum pump
which might operate in the presence of applied voltages and
temperature gradients.

The experimentally measured adiabatically pumped dc
current1 flowing through a chaotic cavity with periodically
varying shape is symmetric in magnetic field H . That is
in seeming contradiction with the theory8,10,12,14,19 predict-
ing that the pumped current has no definite symmetry under
magnetic field reversal. As a result it was conjectured37−39

that the current measured in Ref. 1 is caused by a classical rec-
tification effect. Indeed subsequent measurements3 confirmed
that for slow one-parameter driving there is a symmetric in
magnetic field induced current whose origin is classical rec-
tification. Nevertheless one can not exclude the possibility
that the current measured in Ref. 1 contains also the con-
tribution coming from the quantum pump effect. To check
it, perhaps, it is necessary to investigate the system in a less
symmetric setup, i.e., with reservoirs having different elec-
trochemical potentials or temperatures. In the present paper
we give a simple example when the pumped current has or
has not an odd in magnetic field contribution depending on
whether there is or there is no applied voltage. Further exper-
imental and theoretical efforts to detect and distinguish the

quantum pump effect are highly desirable in view of a possible
application in quantum information processing devices.40,41

The aim of the present paper is to explore in detail the
symmetry properties of the adiabatic current generated by
the periodically driven mesoscopic conductor. To this end
we represent the Floquet scattering matrix at low driving
frequency ω as a sum of different terms with well defined
symmetry properties (e.g., with respect to a magnetic field
direction reversal). One term reflects the symmetry of a sta-
tionary scattering process while the other term vanishing at
ω → 0 has symmetry properties opposite to a stationary scat-
tering process. Based on such a representation we divide the
dc current into parts with well defined symmetry properties.
That opens up additional possibilities for the experimental
detection of the quantum pump effect.

In particular, in the two terminal case, we find a voltage
dependent contribution to the pumped current which is odd
in magnetic field. At small voltage this current is linear in V .
Thus for small magnetic fields the dc-current has a component
which is proportional to the product of frequency, magnetic
field, and applied voltage. For comparison we recall that in
the stationary case, for a two-terminal conductor, the current
linear in voltage (or, alternatively, the conductance) is an even
function of a magnetic field.42,43 A current that is odd in mag-
netic field appears only in the nonlinear voltage regime44,45

and is caused by electron-electron interactions. In contrast, in
the non-stationary case considered here even non-interacting
electrons can show a response that is odd in magnetic field
and linear in applied voltage.

Recently the magnetic field symmetry of the dc current
through an open quantum dot subject to a one-parameter
potential oscillation has been investigated experimentally and
theoretically as a function of frequency.5 In contrast, in the
present paper we consider a two-parameter oscillation and
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investigate the magnetic field symmetry of the dc current in
the presence of adiabatic parametric quantum pumping.

The paper is organized as follows. In Sec.II we briefly con-
sider the Floquet function approach to scattering of electrons
at a periodically driven mesoscopic conductor and analyze
the consequences of microscopic reversibility. We introduce
an exact representation for the scattering matrix at low driv-
ing frequency ω. According to this representation the Floquet
scattering matrix elements (up to linear in ω terms) are pro-
portional to the elements of both the stationary scattering
matrix Ŝ0 and a residual Floquet matrix Â which exhibits
symmetry properties opposite to those of Ŝ0. The symme-
try properties of Ŝ0 are dictated by micro-reversibility, and
the residual Floquet matrix Â reflects directly the breaking
of these symmetries due to the driving of the sample. Using
such a representation we analyze the magnetic field symme-
try of the dc current flowing through the adiabatically driven
scatterer in Sec.III. We show that in the two terminal case
there is a dc current I(od) that is odd in magnetic field, linear
in ω and dependent on the applied voltage. To calculate cor-
rectly I(od) it is necessary to find the residual Floquet matrix
Â. Using several simple examples we outline the method for
calculating Â in Sec.IV. We conclude in Sec.V.

II. GENERAL APPROACH

We use the scattering matrix approach7,43,46 which views
the mesoscopic sample as a scatterer which causes transmis-
sion and reflection of incident carriers. The scatterer is as-
sumed to be coupled to Nr reservoirs via single channel bal-
listic leads which we will number by the Greek letters α, β,
etc.

We assume that in the stationary case electrons coming
from the reservoirs and interacting with the scatterer are sub-
ject only to elastic scattering. Such (single particle) scattering

can be described with the help of the scattering matrix Ŝ0.
The index 0 denotes the stationary scattering matrix. In gen-
eral Ŝ0 is a function of the electron energy E. This matrix
collects all the quantum mechanical amplitudes for electrons
coming from some lead β to be scattered into the same or
any other lead α. These amplitudes are normalized in such a
way that their square define the corresponding particle fluxes
(currents). If the electron velocities at a given energy are
the same in all the leads we can use these amplitudes to re-
late the incident and out-going wave functions. For instance,

let Ψ
(in)
0,β (E, t) = e−i E

h̄
tψ

(in)
0,β (E), be the amplitude of a wave

function describing electrons with energy E incident in lead
β. Then the amplitude of the wave function of particles out-

going in lead α, Ψ
(out)
0,α (E, t) = e−i E

h̄
tψ

(out)
0,α (E), is defined as

follows:

ψ
(out)
0,α (E) =

Nr
∑

β=1

S0,αβ(E)ψ
(in)
0,β (E). (1)

Current conservation implies that the scattering matrix is
a unitary matrix:47

Ŝ†
0Ŝ0 = Ŝ0Ŝ

†
0 = Î, (2)

where Î is a unit matrix. In fact, the knowledge of the matrix
Ŝ0(E) is equivalent to the knowledge of the solution for the
stationary Schrödinger equation.

For the dynamical problem with time-dependent scattering,
scattering is characterized by the integral scattering operator
which depends on two times19. One time-argument relates
to the incoming states and the second time-argument to the
outgoing states. In this paper we are dealing with a partic-
ular non stationary case, namely with a periodically driven
scattering problem. We assume that the scattering potential
(hence the scattering properties of a sample) is varied in time
periodically with period T = 2π/ω. Then, according to the
Floquet theorem (see, e.g., Refs. 48-52), the solution for the
time-dependent Schrödinger equation can be represented in a
relatively simple form

Ψ(E, t) = e−i E
h̄

t
∞
∑

n=−∞

e−inωtψ(En). (3)

Here E is the Floquet energy; ψ(En) is a general solution
of the stationary Schrödinger equation corresponding to the
energy En = E + nh̄ω.

Scattering on such an oscillatory scatterer can be described
via the Floquet scattering matrix. In this work we are con-
cerned with the low-frequency properties of this dynamic
problem and the relevant Floquet matrix ŜF describes the
transitions between the propagating states only.52 The ele-
ments SF,αβ(En, E) of this matrix are the quantum mechan-
ical amplitudes (normalized for current) for an electron with
energy E to enter the scatterer through lead β and to leave
the scatterer with energy En = E + nh̄ω through lead α.

In particular, if the reservoirs are stationary then the in-

coming wave function is Ψ
(in)
0,β (E, t) and the wave function for

particles outgoing to lead α is of the form Eq.(3) with

ψ(out)
α (En) =

Nr
∑

β=1

∑

m

√

km

kn
SF,αβ(En, Em)ψ

(in)
0,β (Em) (4)

Here kn =
√

2meEn/h̄ with me being the electron mass.
Physically Eq.(4) means that an electron interacting with an
oscillating scatterer can gain or lose one or several energy
quanta nh̄ω, n = 0,±1,±2, . . . , and thus an electron can
change its energy by a discrete amount nh̄ω.

Current conservation implies again that also the matrix
ŜF is unitary. For the Floquet scattering matrix the analog
of Eq.(2) reads as follows:

∑

α

∑

n

S∗
F,αβ(En, E)SF,αγ(En, Em) = δm0δβγ , (5a)

∑

β

∑

n

S∗
F,αβ(E,En)SF,γβ(Em, En) = δm0δαγ . (5b)

Here the summation over n goes only over those n which
correspond to a positive En = E+nh̄ω. In the low frequency
limit we have h̄ω ≪ E, and thus n extends from −∞ to +∞.

To find the Floquet scattering matrix one needs to solve a
fully time-dependent Schrödinger equation. Compared to the
stationary problem, this is a more difficult and, generally, it
can be done only numerically. On the other hand the repre-
sentation Eq.(3) seems effectively to reduce the periodically
driven case to the stationary one. Therefore it is attractive
to try to relate the Floquet scattering matrix ŜF to the sta-
tionary scattering matrix Ŝ0.
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A. Adiabatic approximation

Let the stationary scattering matrix Ŝ0(E, {p}) depend on
a set of parameters pi ∈ {p}, i = 1, 2, . . . , Np (e.g., the sam-
ple’s shape, the strength of coupling to leads, the magnetic
field, etc.). Varying these parameters one can change the scat-
tering properties of a sample. We take these parameters to
be periodic functions in time: pi(t) = pi(t+ T ),∀i. Then the

matrix Ŝ0 becomes time-dependent: Ŝ0(E, t) = Ŝ0(E, {p(t)}).
In general the matrix Ŝ0(t) does not describe the scattering
of electrons by a time-dependent scatterer: only the Floquet
scattering matrix ŜF does. Nevertheless in the low frequency
limit, ω → 0, there exists a connection between these two
matrices. This connection becomes more evident if one rep-
resents the Floquet scattering matrix elements as a series in
powers of ω.

1. zeroth order approximation

To zero-th order in the driving frequency the elements
of the Floquet scattering matrix ŜF (En, E) can be approx-

imated by the Fourier coefficients Ŝ0,n of the stationary scat-

tering matrix Ŝ0 as follows:52

ŜF (En, E) = Ŝ0,n(E) +O(ω). (6a)

ŜF (E,En) = Ŝ0,−n(E) +O(ω). (6b)

Here O(ω) denotes the rest which is at least first order in
frequency ω and which is neglected in the zero-th order adia-
batic approximation. The Fourier transformation used reads
as follows

Ŝ0(E, t) =

∞
∑

n=−∞

e−inωtŜ0,n(E), (7a)

Ŝ0,n(E) =

T
∫

0

dt

T einωtŜ0(E, t). (7b)

Before proceeding we check that this approximation is con-
sistent with the current conservation condition. Substituting
Eq.(6) into Eq.(5) and performing the inverse Fourier trans-
formation we arrive at Eq.(2).

Equation (6) corresponds to the frozen scattering matrix
approximation. Within this approximation the stationary
scattering matrix (with parameters dependent on time) com-
pletely characterizes the time-dependent scattering. This ap-
proximation is exact if the scattering matrix Ŝ0 is independent
of the electron energy E within the relevant energy interval.52

2. first order approximation

To first order in the pump-frequency ω we can represent the
Floquet matrix with the help of the frozen scattering matrix,
its energy derivatives and a matrix Â. In general the matrix
Â can not be expressed in terms of the stationary scattering
matrix Ŝ0 and it has to be calculated (like Ŝ0 itself) in each
particular case. The advantage of the representation which
we introduce is that the matrix Â has a much smaller number

of elements than the Floquet scattering matrix. The matrix
Â depends on only one energy, E, and therefore it has Nr×Nr

elements like the stationary scattering matrix Ŝ0. In contrast,
the Floquet scattering matrix ŜF depends on two energies, E
and En = E+nh̄ω, and therefore has ∼ (2nmax+1)×Nr×Nr

relevant elements. Here nmax is the maximum number of en-
ergy quanta h̄ω absorbed/emitted by an electron interacting
with the scatterer which we should take into account to cor-
rectly describe the scattering process. For small amplitude
driving we have nmax ≈ 1. In contrast, if the parameters
vary with a large amplitude then nmax ≫ 1. We represent
the Floquet matrix in the form:53

ŜF (En, E) = Ŝ0,n(E) +
nh̄ω

2

∂Ŝ0,n(E)

∂E
+ h̄ωÂn(E) +O(ω2),

(8a)

ŜF (E,En) = Ŝ0,−n(E)+
nh̄ω

2

∂Ŝ0,−n(E)

∂E
+h̄ωÂ−n(E)+O(ω2).

(8b)
Note the right hand side (RHS) of Eq.(8a) is defined with re-
spect to the incoming energy of carriers, while in Eq.(8b) the
RHS is expressed in terms of the energy of outgoing particles.
To first order in ω, the case of interest here, these two repre-
sentations are fully consistent. Going from one representation
to the other, one needs to take into account that the contri-
bution from the first term on the RHS depends on the choice
of the reference energy. The second and the third terms being
themselves proportional to ω do not depend on this choice.

In Eq.(8) we have introduced a new matrix Â(E, t) with

Fourier coefficients Ân(E). The current conservation condi-
tion, Eq.(5), leads to the following equation for the matrix

Â(E, t):53

h̄ω
(

Ŝ†
0(E, t)Â(E, t) + Â†(E, t)Ŝ0(E, t)

)

=
1

2
P{Ŝ†

0 ; Ŝ0},
(9a)

P{Ŝ†
0 ; Ŝ0} = ih̄

(

∂Ŝ†
0

∂t

∂Ŝ0

∂E
− ∂Ŝ†

0

∂E

∂Ŝ0

∂t

)

. (9b)

Note the matrix P{Ŝ†
0 ; Ŝ0} is traceless. Another but equiva-

lent representation can be obtained from Eq.(9a) multiplying

both sides from the left by Ŝ0 and from the right by Ŝ†
0 , and

by taking into account that because of the unitarity condition,
Eq.(2), we have S0d[S

†
0 ] = −d[S0]S

†
0 .

We remark that Eq.(9) tells us that the expansion in pow-
ers of ω is, in fact, an expansion in powers of h̄ω/δE, where

δE is the energy scale over which the scattering matrix Ŝ0(E)
changes significantly. Therefore, the frequency ω can be con-
sidered as slow and the expansion Eq.(8) can be relevant if

h̄ω ≪ δE. (10)

Consequently, to characterize scattering with an accuracy of
order ω one needs to determine the matrix Â. Equation (9)

defines only the anti commutator of two matrices, Ŝ0 and Â,
and it is insufficient to determine the matrix Â.

By analogy with Eq.(6) we can express the Floquet scat-
tering matrix elements up to first order in driving frequency
in terms of the Fourier coefficients of some effective matrix.
We introduce two matrices Ŝin and Ŝout defined with respect
to incoming and outgoing energies, respectively:

Ŝin(E, t) = Ŝ0(E, t) +
ih̄

2

∂2Ŝ0

∂t∂E
+ h̄ωÂ(E, t). (11a)
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Ŝout(E, t) = Ŝ0(E, t) −
ih̄

2

∂2Ŝ0

∂t∂E
+ h̄ωÂ(E, t). (11b)

Performing the Fourier transformation of Eqs.(11) and com-
paring the result with Eqs.(8) we find:

ŜF (En, E) = Ŝin,n(E) +O(ω2). (12a)

ŜF (E,En) = Ŝout,−n(E) +O(ω2). (12b)

We emphasize that the matrices Ŝin(t) and Ŝout(t) are not
scattering matrices because they are not unitary: Their
Fourier coefficients just define the corresponding matrix ele-
ments of the Floquet scattering matrix according to Eq.(12).
Nevertheless these matrices conserve the current ”on aver-
age”, i.e. after integrating over the time period T :

T
∫

0

dt

T Ŝ†
in(E, t)Ŝin(E, t) = Î +O(ω2). (13a)

T
∫

0

dt

T Ŝ†
out(E, t)Ŝout(E, t) = Î +O(ω2). (13b)

Now we use Eq.(9) to analyze the general properties of the

matrix Â which are due to the micro reversibility of the
Schrödinger equation with a periodically oscillating potential.

B. Micro-reversibility and magnetic field

symmetry of the Floquet scattering matrix

We start with the stationary case when the single parti-
cle Hamiltonian (and correspondingly the scattering matrix)
is independent of time and recall some properties of the sta-
tionary scattering matrix.43,47

The micro-reversibility of the equation of motion (i.e., the
Schrödinger equation) puts some constraints onto the scat-
tering matrix. To make the notation more convenient let us
arrange the incoming/outgoing wave functions at all the leads
into the vector column

ψ̂ =











ψ1

ψ2

...
ψNr











. (14)

Then Eq.(1) can be written in the compact form:

ψ̂(out) = Ŝ0ψ̂
(in). (15)

The micro-reversibility condition (i.e., the invariance with re-
spect to the time inversion) for the spin less case under consid-
eration leaves the solution of the scattering problem invariant
under the simultaneous inversion of the direction of move-
ment, the inversion of a possibly present magnetic field H ,
and the replacement Ψ → Ψ∗. Therefore, the evolution of the
two wave functions, namely Ψ(E,H, t) and Ψ∗(E,−H,−t),
is exactly the same and is described by the same scattering
matrix Ŝ0. Taking into account that the inversion of the di-
rection of movement turns the outgoing waves to incoming

ones and vice versa we can write the following equations for
the starting solution and its transform:

ψ̂(out)(E,H) = Ŝ0(E,H)ψ̂(in)(E,H), (16a)

(

ψ̂(in)(E,−H)
)∗

= Ŝ0(E,H)
(

ψ̂(out)(E,−H)
)∗

. (16b)

From the unitarity condition Eq.(2) it follows that Ŝ−1
0 = Ŝ†

0 .

Therefore we can rewrite Eq.(16a) as follows: ψ̂(in)(E,H) =

Ŝ†
0(E,H)ψ̂(out)(E,H). Comparing the last with Eq.(16b) we

arrive at the required condition:43

Ŝ0(−H) = ŜT
0 (H), (17)

where the upper index ”T” denotes transposition.
Next we consider a periodically driven scattering problem.

As we saw micro-reversibility requires the scattering matrix to
be symmetric with respect to the interchange of incoming and
outgoing channels. For the Floquet scattering matrix these
channels are characterized by both the lead index and the
number n showing how many energy quanta h̄ω an electron
absorbs/emits during the scattering process. In addition, to
get the required symmetry condition, we have to take into
account that the parameters pi of the Hamiltonian depend on
time. We suppose they change periodically in time with the
same frequency ω, and with possible relative phase shifts ϕi:

pi(t) = pi,0 + pi,1 cos(ωt+ ϕi). (18)

In such a case time reversal implies the inversion of the sign
of all the phase shifts ϕi. Therefore, the Floquet scatter-
ing matrix elements are subject to the following fundamental
symmetry:

SF,αβ(E,En;H,ϕ) = SF,βα(En, E;−H,−ϕ), (19a)

or in a matrix form

ŜF (E;−H,−ϕ) = ŜT
F (E;H,ϕ). (19b)

Here E is the Floquet energy [see, Eq.(2)]; ϕ denotes the set
of all the ϕi.

Next we derive the symmetry conditions for the matrix Â
entering Eq.(8). Our definition of the phases ϕi [see, Eq.(18)]

implies that the frozen scattering matrix Ŝ0(E, t) [i.e., the sta-
tionary scattering matrix with parameters dependent on time
Ŝ0(E, t) = Ŝ0(E, pi(t)) ] possesses the following symmetry

Ŝ0(E,−t;H,−ϕ) = Ŝ0(E, t;H,ϕ). (20)

Then equation (9) gives us:

Â(E,−t;H,−ϕ) = −Â(E, t;H,ϕ). (21)

Correspondingly, for the Fourier coefficients, we have the fol-
lowing:

Ŝ0,n(E;H,−ϕ) = Ŝ0,−n(E;H,ϕ), (22a)

Ân(E;H,−ϕ) = −Â−n(E;H,ϕ). (22b)

Substituting the equations given above into the adiabatic
expansion, Eqs.(8), and taking into account the micro-
reversibility condition, Eq.(19), we find the required symme-

try condition for the matrix Â(t):

Â(−H) = −ÂT (H). (23)
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In particular, in the absence of magnetic fields, H = 0, the
diagonal elements of Â vanish. That was previously shown in
Ref. 53. Alternatively equation (23) can be obtained directly
from Eq.(9) exploiting the symmetry condition Eq.(17) and

the unitarity of the frozen scattering matrix Ŝ0(E, t).

The symmetry properties of the residual Floquet matrix Â
are completely different from that of the stationary scatter-
ing matrix Ŝ0. The residual Floquet matrix Â reflects directly
the most important differences between an adiabatic scatter-
ing process at a periodically evolving scatterer and a strictly
stationary scattering process.

III. MAGNETIC FIELD SYMMETRY OF THE

DC CURRENT FLOWING THROUGH THE

SLOWLY DRIVEN SCATTERER

Now we use the results of the previous section to ana-
lyze the dc current through the mesoscopic sample with pe-
riodically varying parameters. We will consider two mech-
anisms which can give rise to such a current. The first
mechanism is a quantum pump effect consisting in rectifying
of time-dependent currents generated by the non stationary
scatterer.53 Second we permit a constant in time difference
of electrochemical potentials/temperatures between the dif-
ferent reservoirs. The last is important, because the widely
investigated situation with reservoirs being at the same elec-
trochemical potential actually hides some physics underlying
the quantum pump effect.

The dc current Iα flowing from the scatterer to the reservoir
in the lead α can be calculated as follows:52

Iα =
e

h

∞
∫

0

dE







Nr
∑

β=1

∑

n

|SF,αβ(En, E)|2 f0,β(E) − f0,α(E)







.

(24)
Here f0,α is the electron distribution function for the reservoir
α. We assume that the reservoirs are in a stationary equilib-
rium state with possibly different electrochemical potentials
µα and temperatures Tα. Then f0,α is the Fermi distribution
function

f0,α(E) =
1

1 + e
E−µα
kBTα

, (25)

with kB being the Boltzmann constant. Substituting the adi-
abatic expansion Eq.(8) into Eq.(24) and performing the in-
verse Fourier transformation we find the current up to linear
in ω terms as follows:53

Iα =
∞
∫

0

dE
T
∫

0

dt
T

∑

β

{

f0,β(E)
dIαβ(E,t)

dE

+ e
h

∣

∣S0,αβ(E, t)
∣

∣

2[
f0,β(E) − f0,α(E)

]

}

,

(26)

where dIαβ/dE is a spectral current driven by the non sta-
tionary scatterer from lead β into lead α:

dIαβ

dE
=
e

h

(

2h̄ωRe[S∗
0,αβAαβ] +

1

2
P{S0,αβ ;S∗

0,αβ}
)

. (27)

Here Re[X] is the real part of X; the function P{X;Y } is
defined in Eq.(9b). The spectral currents dIαβ/dE are subject
to the following conservation law:53

Nr
∑

α=1

dIαβ(E, t)

dE
= 0, (28)

Using Eq. (28) and the unitarity of the frozen scattering ma-
trix,

∑

α |S0,αβ |2 =
∑

β |S0,αβ |2 = 1, one can easily check

that the current Iα is conserved:
∑

α Iα = 0. Further, using
the symmetry conditions, Eqs.(17) and (23), and rearrang-
ing the terms in Eq.(26) we divide the current into the even,

I
(ev)
α (H) = I

(ev)
α (−H), and odd, I

(od)
α (H) = −I(od)

α (−H), in
magnetic field parts:

I
(ev)
α (H) = e

h

∞
∫

0

dE
T
∫

0

dt
T

∑

β

{

[f0,β − f0.α]

×
(

|S0,αβ |2+|S0,βα|2

2
+ h̄ωRe[S∗

0,αβAαβ − S∗
0,βαAβα]

)

+[f0,β + f0,α]
P{S0,αβ ;S∗

0,αβ}+P{S0,βα;S∗

0,βα}

4

}

,

(29a)

I
(od)
α (H) = e

h

∞
∫

0

dE
T
∫

0

dt
T

∑

β

{

[f0,β − f0.α]

×
(

|S0,αβ |2−|S0,βα|2

2
+

P{S0,αβ ;S∗

0,αβ}−P{S0,βα;S∗

0,βα}

4

)

+[f0,β + f0,α]h̄ωRe[S∗
0,αβAαβ + S∗

0,βαAβα]

}

.

(29b)
To show that both these currents are separately conserved,

i.e., that
∑

α

I
(ev)
α = 0 and

∑

α

I
(od)
α = 0, one can use the

relations53

4h̄ω

Nr
∑

α=1

Re[S∗
0,αβAαβ] = P{Ŝ†

0 ; Ŝ0}ββ, (30a)

4h̄ω

Nr
∑

β=1

Re[S∗
0,αβAαβ] = P{Ŝ0; Ŝ

†
0}αα. (30b)

which follow from Eq.(9a).
In a general multi-terminal situation, i.e., if not all the

reservoirs are at the same potential (temperature), the main

contributions to both the even I
(ev)
α and the odd I

(od)
α currents

are proportional to the conductances e2

h
|S0,αβ |2 averaged over

time. The non-stationarity results only in small corrections.
However in the two terminal case the odd in magnetic field
dc current I(od) has no contribution coming from the conduc-
tances. The current I(od) is linear in ω and it is entirely due
to the non-adiabaticity of the pump scattering processes.

A. Two terminal many channel scatterer

To show this let us consider the scatterer connected to only
two reservoirs via, possibly many channel, ballistic leads. We
will mark the quantities related to the left and to the right
reservoirs via the lower indices ”L” and ”R”, respectively. Let
the left lead have NL channels, and the right lead have NR

channels: NL +NR = Nr. We define the currents flowing to
the left IL and to the right IR = −IL, and the distribution
functions for the left f0,L and for the right f0,R reservoirs as
follows:

IL =
NL
∑

α=1

Iα, f0,α = f0,L, 1 ≤ α ≤ NL,

IR =
Nr
∑

α=NL+1

Iα, f0,α = f0,R, NL + 1 ≤ α ≤ Nr.
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By analogy we redefine the quantities dependent on two in-
dices. For example, the reflection to the left RLL and the
spectral current dIRL/dE driven from the left to the right are
defined as follows:

RLL =
NL
∑

α=1

NL
∑

β=1

|S0,αβ |2,

dIRL

dE
=

Nr
∑

α=NL+1

NL
∑

β=1

dIαβ

dE
.

Note that the two terminal transmission is symmetric in reser-
voirs indices, TLR = TRL, and it is even in magnetic field.
That can be easily seen from their definition, similar to the
one given above for RLL, and from the unitarity of the scat-
tering matrix Ŝ0, Eq.(2). In addition from Eq.(28) we get:
dILξ/dE + dIRξ/dE = 0, for ξ = L,R. Using the identity:53

dILL

dE
+
dILR

dE
≡ dIL

dE
=

NL
∑

α=1

i
e

2π

(

∂Ŝ0

∂t

∂Ŝ†
0

∂E
− ∂Ŝ0

∂E

∂Ŝ†
0

∂t

)

αα

,

performing necessary summations in Eqs.(29), and integrat-
ing by parts over time and over energy, we get:

I
(ev)
L = e

h

∞
∫

0

dE
T
∫

0

dt
T

{

[f0,R − f0,L]

×
(

TLR +
NL
∑

α=1

Nr
∑

β=NL+1

P{S0,αβ ;S∗

0,αβ}+P{S0,βα;S∗

0,βα}

4

)

+
(

− ∂
∂E

[f0,R + f0,L]
)

ih̄
4

NL
∑

α=1

(

∂Ŝ0

∂t
Ŝ†

0 + Ŝ†
0

∂Ŝ0

∂t

)

αα

}

,

(31a)

I
(od)
L = I

(od,ev)
L + I

(od,od)
L ,

I
(od,ev)
L = ei

8π

∞
∫

0

dE
T
∫

0

dt
T

{

(

− ∂
∂E

[f0,R + f0,L]
)

×
NL
∑

α=1

(

∂Ŝ0

∂t
Ŝ†

0 − Ŝ†
0

∂Ŝ0

∂t

)

αα

}

,

I
(od,od)
L = eω

2π

∞
∫

0

dE
T
∫

0

dt
T

{

[f0,R − f0,L]

×
NL
∑

α=1

Nr
∑

β=NL+1

Re[S∗
0,αβAαβ + S∗

0,βαAβα]
}

.

(31b)

For low driving frequencies, ω → 0, we see that in the two
terminal case the part of the dc-current that is odd in mag-
netic field, I(od)(H) = −I(od)(−H), is linear in ω irrespec-
tive of whether the reservoirs are at the same conditions
(f0,L = f0,R) or not (f0,L 6= f0,R).

Let us introduce the voltage V and the temperature differ-
ence ∆T applied to the system, both constant in time:

µR = µ0 + eV
2
, µL = µ0 − eV

2
,

TR = T0 + ∆T
2
, TL = T0 − ∆T

2
,

(32)

and analyze the current I(od) in more detail. According to

Eq.(31b) this current consists of two parts, I
(od)
L = I

(od,ev)
L +

I
(od,od)
L . The first one

I
(od,ev)
L (V,∆T ) = I

(od,ev)
L (−V,−∆T ),

is even in both V and ∆T and it survives even at f0,L =
f0,R. This contribution is due to conventional quantum pump
effect.8 In contrast, the second part

I
(od,od)
L (V,∆T ) = −I(od,od)

L (−V,−∆T ),

is odd in both V and ∆T . Both contributions, I(od,ev) and
I(od,od), have the same origin: They are rectified ac currents
with spectral density dIαβ/dE, Eq.(27), pushed by the pump

from one reservoir to another. The part I(od,ev) emphasizes
the contribution arising if there are incoming electrons from
both leads, α and β. While the part I(od,od) is entirely due to
an asymmetry in electron flows incident from the leads. This
asymmetry, due to the difference between the reservoir’s dis-
tribution functions f0,α and f0,β , vanishes in the absence of an
applied voltage, V = 0, and in the absence of a temperature
difference, ∆T = 0.

For further reference we now give the equations (31) for the
particular case of a scatterer connected to one-channel leads.

1. Two terminal single channel scatterer

For single channel leads, NL = NR = 1, the stationary
scattering matrix Ŝ0 is a unitary 2 × 2 matrix:

Ŝ0 = eiγ

( √
Re−iθ i

√
Te−iφ

i
√
Teiφ

√
Reiθ

)

. (33)

Here R and T are the reflection and the transmission prob-
ability, respectively (R + T = 1). The phase θ characterizes
the asymmetry between the reflection to the left and to the
right. The phase γ relates to the charge on the scatterer. The
phase φ characterizes the asymmetry between the transmis-
sion through the scatterer from the left to the right and back
and it relates to the magnetic flux on the scatterer.

We assume that all these quantities are functions of the
electron energy E, the magnetic field H , and the external
parameters pi(t) varying with frequency ω. From Eq. (17) it
follows that R,T, γ, and θ are even functions of the magnetic
field H , while φ is an odd function of H .

Using the scattering matrix, Eq.(33), we rewrite the dc
current IL = −IR, Eq.(31), as follows:

IL = I
(ev,ev)
L + I

(ev,od)
L + I

(od,ev)
L + I

(od,od)
L , (34a)

I
(ev,ev)
L =

e

4π

∞
∫

0

dE

T
∫

0

dt

T

(

− ∂

∂E
[f0,R + f0,L]

)

R
∂θ

∂t
, (34b)

I
(ev,od)
L =

e

h

∞
∫

0

dE

T
∫

0

dt

T [f0,R − f0,L]

(

T − h̄

2

∂

∂E

[

T
∂γ

∂t

]

)

,

(34c)

I
(od,ev)
L =

e

4π

∞
∫

0

dE

T
∫

0

dt

T

(

− ∂

∂E
[f0,R + f0,L]

)

T
∂φ

∂t
, (34d)

I
(od,od)
L =

eω

2π

∞
∫

0

dE

T
∫

0

dt

T [f0,R−f0,L]Re[S∗
0,LRALR+S∗

0,RLARL].

(34e)
Here the first upper index, ev/od, relates to the magnetic
field symmetry of the current, while the second upper index
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relates to the symmetry with respect to the applied voltage
(temperature) difference.

The currents I
(ev,ev)
L and I

(od,ev)
L are conventional pumped

currents (with reservoirs being at the same conditions). They
depend on the asymmetry of the stationary scattering matrix:
The phases θ and φ describe the asymmetry in the reflection
from and in the transmission through the scatterer, respec-
tively.

The remaining two contributions, I
(ev,od)
L and I

(od,od)
L , are

present if the electron flows incoming from the reservoirs are

different. The even in magnetic field current I
(ev,od)
L exists

already in the stationary case. The variation of the scattering
parameters results in averaging over the time period and in
the correction to the frozen conductance.26 In contrast the
odd in magnetic field current I

(od,od)
L exists only in the non-

stationary regime.

The contributions I
(ev,ev)
L , I

(od,ev)
L , I

(od,od)
L , and the part

(proportional to ∂γ/∂t) of I
(ev,od)
L all are due to the quantum

rectification of ac currents, Eq.(27), generated by the oscillat-
ing scatterer. This mechanism does work (i.e., a dc current
exists) if the time reversal invariance is broken in the system
by the varying parameters pi and hence the integral over the
time period does not vanish.

The last statement is not evident for the current I
(od,od)
L .

To make it clear we note the following: Generally the non-
adiabatic corrections to the frozen solution of the Schrödinger
equation (and to the frozen scattering matrix) are propor-

tional to the time derivative. The matrix Â being a part
of these corrections should be proportional to ∂/∂t as well.

Therefore, the conditions for I
(od,od)
L , Eq.(34e), to be non-

vanishing, (which requires that the integral over the time
period is nonzero), are generally the same as that for, e.g.

I
(ev,ev)
L , Eq.(34b).

However, we emphasize that the necessary conditions to get
a pumped current include both the time reversal symmetry
breaking and the presence of a spatial asymmetry. Strictly
speaking these conditions are not identical for all the parts,
Eqs.(34b) - (34e). In particular, the applied voltage V makes
the whole system (the sample plus reservoirs) to be spatially
non-symmetric, in the sense that the direction from the left
to the right is not identical to the opposite direction. There-

fore, e.g., the current I
(od,od)
L is less sensitive to the spatial

asymmetry of a scatterer than, e.g., the current I
(od,ev)
L is.

In the next section we calculate the residual Floquet ma-
trix Â for several simple examples and illustrate the validity of
the general statements made here. In particular we consider a
one-dimensional loop with two leads and with enclosed mag-

netic flux. This example shows that the current I
(od,od)
L exists

(at nonzero magnetic flux) already if only the time reversal
invariance is broken (i.e., if two parameters oscillate with a

phase lag ∆ϕ 6= 0). In contrast, a non-zero current I
(od,ev)
L

requires (in addition to ∆ϕ 6= 0) an asymmetry in coupling
to the leads. If such a coupling is symmetric then the current

I
(od,ev)
L is identically zero no matter how much the magnetic

flux through the ring is and whether ∆ϕ is zero or not.

IV. THE FLOQUET SCATTERING MATRIX

FOR LOW DRIVING FREQUENCIES: SIMPLE

EXAMPLES

In this section we illustrate how one can calculate the linear
in ω corrections to the frozen scattering matrix in the same
fashion as the stationary scattering matrix Ŝ0.

According to Eq.(12), at ω → 0 the Floquet scattering
matrix elements are the Fourier coefficients of some matrices
Ŝin/Ŝout, Eq.(11) which depend on the stationary scattering

matrix Ŝ0 and on the matrix Â. The matrix Ŝin/Ŝout does
not possess a definite symmetry, i.e., with respect to a time
and/or a magnetic field direction reversal. While the sta-

tionary scattering matrix Ŝ0 and the matrix Â do. The last
circumstance is the motivation why we expressed the current
Iα in terms of Ŝ0 and Â instead of Ŝin/Ŝout. On the other
hand for the calculation of the Floquet scattering matrix el-
ements it is more convenient to work in terms of the matrix
Ŝin or Ŝout.

A. Single δ-function barrier

In the first example we consider the Floquet scattering ma-
trix in the limit ω → 0 of an oscillating point-like scatterer
coupled to two reservoirs via one-channel leads. As we will
show for such a scatterer

Â = 0, (35)

and low frequency scattering up to linear in ω terms is entirely
described by the frozen scattering matrix Ŝ0(t), see Eqs.(12)

and (11) at Â = 0.

To find ŜF we have to solve the Schrödinger equation with
the potential V (x, t) being the delta function δ(x) multiplied
by the amplitude oscillating in time:

ih̄ ∂Ψ
∂t

=
(

− h̄2

2me

∂2

∂x2 + V (x, t)
)

Ψ,

V (x, t) = δ(x)
(

V0 + 2V1 cos(ωt+ ϕ)
)

.
(36)

According to the Floquet theorem the solution of the above
equation has the form of Eq.(3). Away from the point x = 0
the functions ψ(En) are the plain waves:

ψ(En) = ane
iknx + bne

−iknx. (37)

The coefficients an, bn are determined from the boundary
condition at x = 0:

Ψ(x = +0) = Ψ(x = −0),

∂Ψ
∂x

∣

∣

x=+0
− ∂Ψ

∂x

∣

∣

x=−0
= 2me

h̄2 V (t)Ψ(x = 0).
(38)

First, to find SF,LL and SF,RL we consider the plain wave
of a unit amplitude with energy E coming from the left (we
directed the x-axis from the left to the right):

Ψ(in)(E, t) = e−i E
h̄

teikx. (39)

Here E = h̄2k2/(2me). Then the coefficients a
(out)
n and b

(out)
n

for an outgoing wave

Ψ(out) = e−i E
h̄

t
∑

n

e−inωt
(

θ(x)a(out)
n eiknx + θ(−x)b(out)

n e−iknx
)

,

(40)
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(here θ(x) is the Heaviside step function: θ(x) = 1 at x > 0
and θ(x) = 0 at x < 0) define the Floquet scattering matrix
elements as follows:

SF,RL(En, E) =
√

kn

k
a
(out)
n ,

SF,LL(En, E) =
√

kn

k
b
(out)
n .

(41)

Substituting the whole wave function Ψ = Ψ(in) +Ψ(out) into
the boundary condition Eq.(38) we get the following relations

between the different a
(out)
n and b

(out)
n :

(kn + iκ0)a
(out)
n = knδn0 − i(κ1a

(out)
n−1 + κ−1a

(out)
n+1 ),

b
(out)
n = a

(out)
n − δn0.

(42)

Here we have introduced the following parameters:

κ0 =
me

h̄2 V0, κ±1 =
me

h̄2 V1e
∓iϕ. (43)

We solve Eq.(42) in the adiabatic limit ω → 0 of interest
here. In this limit we can safely expand the wave vector kn

as follows:
kn = k +

nω

v
+O(ω2), (44)

where v = h̄k/me is an electron velocity. In addition we use

the adiabatic expansion Eq.(12a) and express ŜF (En, E) in

terms of the Fourier coefficients of the matrix Ŝin(E). Sub-
stituting Eqs.(41), (44) and (12a) into Eq.(42), and ignoring
all the terms of order ω2 and higher we can write:

(k + iκ0)Sin,RL,n +
(

1
2
− iκ0

2k

)

nω
v
S0,RL,n =

kδn0 − i(κ1Sin,RL,n−1 + κ−1Sin,RL,n+1)
+i ω

2vk
[κ1(n− 1)S0,RL,n−1 + κ−1(n+ 1)S0,RL,n+1],

Sin,LL,n(E) = Sin,RL,n(E) − δn0

√

kn

k
.

Performing the inverse Fourier transformation we find the
equation for the time-dependent matrix elements of the ma-
trix Ŝin(E, t):

Sin,RL(E, t) = k
k+iκ(t)

− i
2vk

k−iκ(t)
k+iκ(t)

∂S0,RL(E,t)

∂t
,

Sin,LL(E, t) = Sin,RL(E, t) − 1.

(45)

Here κ(t) = meV (t)/h̄2. We solve these equations perturba-
tively in the small parameter proportional to ∂/∂t ∼ ω → 0.
To find the matrix elements Sin,RR and Sin,LR one can either
exploit the symmetry condition or solve the same problem but
with the unit wave incoming from the right: Ψ(in)(E, t) =

e−i E
h̄

te−ikx. Up to terms linear in ω, the solution of both
problems reads:

Ŝin(E, t) = Ŝ0(E, t) +
ih̄

2

∂2Ŝ0(E, t)

∂t∂E
. (46)

Here we used ∂k/∂E = 1/(h̄v). The stationary matrix is well
known:

Ŝ0 =
k

k + iκ

(

1 1
1 1

)

− Î. (47)

Comparing equations (46) and (11a) we arrive at the an-
nounced result, Eq.(35). Thus, to describe the low frequency
scattering on point-like scatterer it is enough to know only
the frozen scattering matrix.

Alternatively, one can use Eq.(9) to show that the ma-

trix Â vanishes for the oscillating δ-function potential. It
is because the commutator P{Ŝ†

0 ; Ŝ0} is identically zero for
the scattering matrix Eq.(47). We can conclude that a point
scatterer can not generate a quantum pump effect since it can
not rectify ac currents (the spectral density dIαβ/dE, Eq.(27),
vanishes). An oscillating scatterer does of course generate ac-
currents, but these currents are total time derivatives of the
charge near the barrier53 and thus can not contribute to a
dc-current.

Note, that the deviation of the effective scattering matrix
Ŝin(E, t), Eq.(46) from the frozen scattering matrix Ŝ0(E, t),
Eq.(47), is as small as, at least, h̄ω/E. For the opaque barrier
the deviation is even smaller due to the factor k/κ ≪ 1. For
the small oscillating amplitude case the deviation is addition-
ally damped by the factor κ1/κ0 ≪ 1.

B. Scatterer composed of two point-like barriers

In this subsection we consider an example of a spatially
”extended” scatterer which consists of two point-like scatter-
ers placed at x = 0 and x = L, respectively. This system is
coupled to two reservoirs via single channel leads.

The scattering properties of point scatterers are assumed to
be oscillating in time with the same frequency ω. Scattering
at the left and on the right barriers is described via the Flo-
quet scattering matrices ŜL

F and ŜR
F , respectively. Scattering

on the whole system is described via the Floquet scattering
matrix ŜF .

By analogy with the previous example we consider scatter-
ing of a unit wave coming from the left, Eq.(39). The whole
wave function is of a Floquet function type Eq.(3) with

ψ(En) =















δn0e
ikx +

√

k
kn
SF,LL(En, E)e−iknx, x < 0,

ane
iknx + bne

−iknx, 0 < x < L,
√

k
kn
SF,RL(En, E)eikn(x−L), x > L,

.

(48)
To find the unknown coefficients we use the boundary condi-
tions which we formulate in terms of scattering matrices ŜL

F

and ŜR
F assumed to be known:

SF,LL(En, E) = SL
F,LL(En, E) +

∑

m

SL
F,LR(En, Em)

√

km

kn
bm,

kn

k
an = SL

F,RL(En, E) +
∑

m

SL
F,RR(En, Em)

√

km

kn
bm,

kn

k
bne

−iknL =
∑

m

SR
F,LL(En, Em)

√

km

kn
ame

ikmL,

SF,RL(En, E) =
∑

m

SR
F,RL(En, Em)

√

km

kn
ame

ikmL.

(49)
To simplify this system of equations we use the adiabatic ap-
proximation Eq.(12) for the Floquet scattering matrices. For
this approximation to be valid, the energy quantum h̄ω should
be small compared with the relevant energy scale for the prob-
lem, [see, Eq.(9)].

In the case under consideration, there are several energy
scales. The first one is determined by the energy E of an
incoming electron. This scale relates to the deviation of the
effective scattering matrices ŜL

in and ŜR
in for point-like scat-

terers from the corresponding frozen ones. This deviation is
of the order of h̄ω/E. Another energy scale δE relates to
the spatial size of the system L and arises from the quantum
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mechanical interference in the region between the scatterers
at 0 < x < L. In our case, Eq.(49), the interference effect
is described via the factors eikmL which we will expand as
follows:

e±ikmL = e±ikL

(

1 ± im
ω

ωL
+O(ω2)

)

. (50)

Here ωL = v/L defines the distance ∆E ∼ h̄ωL between the
quantum levels if the system is decoupled from the reservoirs.
The second term in the brackets on the RHS of Eq. (50)
is due to an interplay of a quantum-mechanical interference
with a quantized energy exchange between the scatterer and
an electron traversing it.

The system can be treated as spatially ”extended” if L ≫
λE, where λE = h/

√
2meE is the de Broglie wave length for

an electron with energy E. In such a case the non-adiabatic
corrections to the frozen scattering matrix are at least of or-
der h̄ω/∆E. Note if the energy E is close to the energy
of a transmission resonance then the corrections will be of
order h̄ω/Γ, where Γ is the width of the transmission res-
onance. In contrast, if L ≪ λE then the scatterer can be
viewed as point-like and the non-adiabatic corrections will
be as small as h̄ω/E (see, Sec.IVA). Therefore, assuming
L ≫ λE we can safely ignore the corrections of order h̄ω/E
and concentrate on the larger corrections of order h̄ω/δE with
δE = min{∆E,Γ}. Since we ignore the terms of order h̄ω/E
we can replace the Floquet scattering matrices for point-like
scatterers by the corresponding frozen scattering matrices,

Ŝ
R/L
F (En, Em) = Ŝ

R/L
0,n−m + O(h̄ω/E) [see, Eq.(8)]. To avoid

a possible misunderstanding we do not write the energy E
as an argument of ŜR/L emphasizing that these matrices can
be treated as energy independent on the scale of order δE.
Nevertheless they can depend on energy over a much larger
scale, say, of order E. On the other hand, since we keep the
terms of order h̄ω/δE we use the adiabatic approximation

ŜF (En, E) = Ŝin,n(E) +O(ω2) [see, Eq.(12)] for the Floquet
scattering matrix of the whole structure.

Using these approximations and substituting Eq.(50) into
the system of equations (49) and performing the inverse
Fourier transformation we arrive at the following time-
dependent equations valid up to first order in ∂/∂t:

Sin,LL(E, t) = ŜL
0,LL(t) + SL

0,LR(t)b(t),

a(t) = SL
0,RL(t) + SL

0,RR(t) b(t),

e−ikL
(

b(t) + 1
ωL

db(t)
dt

)

= SR
0,LL(t)eikL

(

a(t) − 1
ωL

da(t)
dt

)

,

Sin,RL(E, t) = SR
0,RL(t)eikL

(

a(t) − 1
ωL

da(t)
dt

)

,

(51)
Here we introduced the functions a(t) and b(t) defined as fol-
lows (x = a,b):

x(t) =
∑

n

e−inωt

√

kn

k
xn. (52)

We consider the terms da/dt and db/dt as small perturbations
and solve the system of equations (51) up to linear order in
these corrections terms.

Note, that without the terms da/dt and db/dt the system
of equations Eq.(51) is exactly the system of equations which

defines the matrix elements of the frozen (stationary) scatter-

ing matrix (with the evident replacement Ŝin → Ŝ0).
Analogously, to calculate Sin,RR and Sin,LR we consider the

same problem but with the unit wave coming from the right:

Ψ(in)(E, t) = e−i E
h̄

te−ik(x−L). It is convenient to represent
the results in the matrix form:

Ŝin(E, t) = Ŝ0 − 1

ωL
M̂LM̂

−1 ∂

∂t

[

M̂−1M̂R

]

. (53)

Here S̄0 is the frozen scattering matrix:

Ŝ0(E, t) = M̂0 + M̂LM̂
−1M̂R. (54)

The matrices M̂ are all expressed in terms of the scattering
matrix elements for the left and right scatterers. They depend
on energy through the factor eikL and on time through the
matrices ŜL

0 and ŜR
0 :

M̂0 =

(

SL
0,LL 0
0 SR

0,RR

)

, M̂ =

(

1 −SL
0,RR

−SR
0,LLe

i2kL 1

)

,

M̂L =

(

0 SL
0,LR

SR
0,RLe

ikL 0

)

, M̂R =

(

SL
0,RL 0
0 SR

0,LRe
ikL

)

.

(55)
Our aim is to calculate the matrix

h̄ωÂ = Ŝin − Ŝ0 − ih̄

2

∂2Ŝ0

∂t∂E

[see, Eq.(11a)] for the double scatterer structure under con-
sideration. Using Eq.(54) we obtain

ih̄

2

∂2Ŝ0

∂t∂E
= − 1

2ωL

∂

∂t

[

M̂L

(

M̂−1
)2

M̂R

]

.

Then using Eq.(53) we obtain

h̄ωÂ(E, t) = 1
2ωL

{

∂
∂t

[

M̂LM̂
−1
]

M̂−1M̂R

−M̂LM̂
−1 ∂

∂t

[

M̂−1M̂R

]}

.

(56)

The advantage of the above expression is its compactness.
However to be able to draw some conclusion we need the
matrix elements of Â expressed directly in terms of the matrix
elements of SL

0 and SR
0 :

h̄ωALL =
S0,LL−SL

0.LL

ωL∆
∂
∂t

[

ln

(

SL
0,LR

SL
0,RL

)]

,

h̄ωALR =
S0,LR

2ωL∆

{

(2 − ∆) ∂
∂t

[

ln

(

SL
0,LR

SR
0,LR

)]

+(1 − ∆) ∂
∂t

[

ln

(

SR
0,LL

SL
0,RR

)]}

,

h̄ωARL = −S0,RL

2ωL∆

{

(2 − ∆) ∂
∂t

[

ln

(

SL
0,RL

SR
0,RL

)]

+(1 − ∆) ∂
∂t

[

ln

(

SR
0,LL

SL
0,RR

)]}

,

h̄ωARR =
S0,RR−SR

0.RR

ωL∆
∂
∂t

[

ln

(

SR
0,RL

SR
0,LR

)]

.

(57)

Here ∆ = 1 − SL
0,RRS

R
0,LLe

i2kL. We see that for the case

considered the matrix elements of Â are proportional to time
derivatives as it should be.
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Φ

L
1

L
2

S
L S

Rα=1

α=2

α=3
α=1

α=2

α=3

FIG. 1: A one-channel ring of length L = L1 + L2 with
enclosed magnetic flux Φ and with two leads. The Greek
letter α numbers the scattering channels at the left SL and
right SR wave splitters.

We can now use Eq.(57) to investigate the symmetry prop-

erties of the matrix Â. We suppose that the matrices SL
0 and

SR
0 are of the form given by Eq.(33). If there is no magnetic

field, H = 0, then in Eq.(33) the phases φL/R = 0. There-
fore, the scattering matrices are symmetric in the lead indices,

S
L/R
αβ = S

L/R
βα . In such a case Aαα = 0 and ALR = −ARL

that is in agreement with Eq.(23). In addition, if the system
is inversion symmetric, i.e., if the scatterers are the same,
ŜL = ŜR, and if in addition θ = 0 and φ = 0, then all matrix
elements are zero, Â = 0. Note, for an oscillating scatterer
the last two properties apply only if two scatterers oscillate
in synchronism, but not if they oscillate with a phase lag.

C. Ring with enclosed magnetic flux

Our third example is a one-channel ring with enclosed mag-
netic flux Φ coupled to two reservoirs, Fig.1. The lower and
the upper branches of the ring have length L1 and L2, respec-
tively. Following Ref. 54 we describe the coupling between the
ring and the lead via a single parameter 3 × 3 scattering ma-
trix Ŝ0(ǫ), with ǫ = ǫL and ǫ = ǫR for the left and the right
coupling points, respectively. The numbering of scattering
channels is shown in Fig.1. We will use two different ma-

trices, Ŝ
(s)
0 and Ŝ

(a)
0 , which couple the lead to the branches

of the ring symmetrically and asymmetrically, respectively.
They are:

Ŝ
(s)
0 (ǫ) =





−(a+ b)
√
ǫ

√
ǫ√

ǫ a b√
ǫ b a



 , (58a)

Ŝ
(a)
0 (ǫ) =





a
√
ǫ b√

ǫ −(a+ b)
√
ǫ

b
√
ǫ a



 . (58b)

Here a = (
√

1 − 2ǫ − 1)/2 and b = (
√

1 − 2ǫ + 1)/2. The
coupling parameter should be within the following interval:
0 ≤ ǫ ≤ 0.5. We suppose that the coupling parameters ǫL

and ǫR oscillate in time with the same frequency ω but with
the phase lag ∆ϕ = ϕR − ϕL:

ǫL/R = [ǫ
L/R
0 + ǫ

L/R
1 cos(ωt+ ϕL/R)]/2.

We keep the parameters ǫL and ǫR independent of the elec-
tron energy. This allows us to describe the time-dependent

0.0 0.2 0.4 0.6 0.8 1.0
∆ϕ, 2π

-0.05

-0.03

-0.01

0.01

0.03

0.05
I(od,od)

(od,ev)I

FIG. 2: The parts of the pumped currents which are odd in

magnetic flux I
(od,ev)
L and I

(od,od)
L , Eqs.(34d) and (34e), are

given as a function of the phase difference ∆ϕ = ϕR − ϕL

between the oscillating coupling parameters ǫR(t) and ǫL(t)
for symmetric coupling: Both the left and the right wave
splitters are coupled symmetrically to the branches of the ring.
The currents are in units of eω/(2π). The parameters are:
L1 = π; L2 = 0.7π; Φ = 0.4Φ0 ; µ0 = 9; V = 0.5; TL = TR =
0.1; ǫL0 = ǫR0 = 0.5; ǫL1 = ǫR1 = 0.4. We use the following
units: 2me = 1; h̄ = 1; e = 1; kB = 1.

scattering at the three lead splitters within the frozen scat-
tering matrix approximation, see Sec.II A 1. Also we assume
that a voltage V can be applied between the reservoirs, here
kept at the same temperature, see Eq.(32).

We concentrate mainly on the part of the current I
(od)
L

which is odd in magnetic flux. This current consists itself of

two parts, I
(od,ev)
L and I

(od,od)
L , which are defined by Eqs.(34d)

0.0 0.2 0.4 0.6 0.8 1.0
Φ, Φ0

-0.10

-0.05

0.00

0.05

0.10

I (od,od)

I (od,ev)

FIG. 3: The currents I
(od,ev)
L and I

(od,od)
L [in units of eω/(2π)]

as a function of the enclosed magnetic flux Φ [in units of the
magnetic flux quantum Φ0 = h/e] for the case of symmetric
coupling: Both the left and the right wave splitters are cou-
pled symmetrically to the branches of a ring. The parameters
are the same as in Fig.2. The phase difference is: ∆ϕ = π/2.
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5 10 15 20 25
µ0

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

I (od,od)

I (od,ev)

I(ev,od)

FIG. 4: The currents through the ring are given as a function
of the Fermi energy µ0. The coupling is asymmetric: Both the
left and the right wave splitters are coupled asymmetrically
to the branches of a ring. The parameters are the same as
in Fig.2. The phase difference is: ∆ϕ = π/2. The currents

I
(od,ev)
L and I

(od,od)
L are given in units of eω/(2π). The current

even in magnetic flux I
(ev,od)
L is given in dimensionless units

of 1/(2π).

and (34e), respectively. To find I
(od,od)
L it is necessary to

calculate the residual Floquet matrix Â for the system under
consideration, Fig.1. These calculations are quite similar to
those given in Sec.IVB and we do not give the details here,
see Appendix.

The current I
(od,ev)
L , odd in magnetic flux and even in ap-

plied voltage, is governed by the phase φ which determines
the asymmetry in the transmission phase through the ring,
see Eq.(33). Interestingly, in our model this asymmetry de-
pends crucially on the type of coupling between the leads and
the ring. If each of the leads is coupled symmetrically to the

arms of the ring, i.e., if ŜL
0 = Ŝ

(s)
0 (ǫL) and ŜR

0 = Ŝ
(s)
0 (ǫR),

then the phase φ = 0 for any magnetic flux. In such a case

the current I
(od,ev)
L is identically zero and the full current odd

in magnetic flux I
(od)
L is odd in the applied voltage as well.

In Fig.2 and Fig.3 we depict the current contribution which
is odd in magnetic flux as a function of the phase lag and
the magnetic flux, respectively, for symmetric coupling. Thus
if the coupling between the ring and the leads is symmet-
ric the current odd in magnetic flux appears only at V 6= 0
(and/or at ∆T 6= 0), i.e., when the electron flows incident on
the ring from the reservoirs are different. In contrast, if any
lead (or both) is coupled asymmetrically to the ring, i.e., if

ŜL
0 = Ŝ

(a)
0 (ǫL) and/or ŜR

0 = Ŝ
(a)
0 (ǫR), then the phase φ is

not identically zero and the current I
(od,ev)
L does contribute

to I
(od)
L .

In Fig.4 we depict the currents I
(od,ev)
L and I

(od,ev)
L as a

function of the Fermi energy µ0 for asymmetric coupling. For

comparison we give the current I
(ev,od)
L , Eq.(34c), which is

proportional to the transmission probability through the ring.

Both currents I
(od,ev)
L and I

(od,od)
L peak (by modulo) at en-

ergies where the transmission (reflection) coefficient changes
sharply.

V. CONCLUSION

In this work we analyze the scattering properties of a peri-
odically driven mesoscopic scatterer. Traversing such a scat-
terer an electron can gain or lose one or several energy quanta
h̄ω and thus can change its energy. Therefore, generally the
scattering matrix of a periodically driven mesoscopic scat-
terer depends on two energies, incoming and outgoing, We
show that at low driving frequency ω → 0 one can introduce
effective matrices depending on only one energy, either incom-
ing or outgoing [see, Eq.(11)], which approximates accurately
the Floquet scattering matrix up to terms of order ω [see,

Eq.(12)]. We introduce two effective matrices, Ŝin and Ŝout,
which are not unitary. Nevertheless each of them conserves
the current after averaging over a driving cycle.

The matrices Ŝin and Ŝout are the sum of a frozen scat-
tering matrix and a matrix which determines the linear in ω
part. The last is responsible for the quantum pump effect8

and it consists of two contributions. The first one is the sec-
ond derivative of the frozen scattering matrix Ŝ0(t). The sec-

ond contribution is defined by an in principle new matrix Â.
In particular, the matrix Â has a symmetry with respect to
magnetic field reversal, Eq.(23), that is opposite to that of the
stationary (frozen) scattering matrix, Eq.(17). In contrast to
the stationary scattering matrix the residual Floquet matrix
reflects directly the chirality of the pumping process.

Using the adiabatic representation Eq.(12) for the Floquet
scattering matrix we examine the dc current flowing through
the two terminal (many channels) mesoscopic sample under
the simultaneous action of a slow parametric oscillation of the
scatterer and simultaneously subject to an applied dc volt-
age. We divide the current into parts with definite symmetry
properties with respect to a magnetic field and/or a voltage
inversion.

As it is known in the stationary case the dc current through
the coherent two terminal sample is an even function of a
magnetic field. On the other hand the periodically driven
scatterer shows an odd in magnetic field, linear in ω current,
Eq.(31b), which is due to the quantum pump effect. The odd
in applied voltage part of this current is proportional to the
residual Floquet matrix Â [see also, Eq.(34e)].

We demonstrate that the calculation of the residual matrix
Â can be performed in close analogy with the calculation of
the stationary scattering matrix Ŝ0. We emphasize that the
matrix Â reflects the interplay of absorbing/emitting of en-
ergy quanta h̄ω with quantum mechanical interference inside
the scatterer. For instance, for a point-like scatterer (without

the space for interference inside) the matrix Â is identically
zero.

Our work suggests that additional experiments which in-
vestigate a driven mesoscopic conductor in a less symmetric
setup, i.e., with reservoirs having different electrochemical po-
tentials or temperatures, might be useful to reveal the pres-
ence of a quantum pump effect.

Acknowledgments

We thank M.L. Polianski for a critical reading of the
manuscript. This work was supported by the Swiss National
Science Foundation.



12

APPENDIX

Ring with enclosed magnetic flux: Analytical

expressions

The stationary scattering matrix Ŝ0 for the ring with
branches of length L1 and L2, and with enclosed magnetic
flux Φ coupled to two leads via wave splitters SL and SR

(see, Fig.1) reads:

Ŝ0 =

(

S0,LL S0,LR

S0,RL S0,RR

)

,

S0,LL = SL
11 + SL

12W2 + SL
13W3e

iL2

(

2π
L

Φ

Φ0
+k

)

,

S0,RL = SR
12W4 + SR

13W1e
iL1

(

2π
L

Φ

Φ0
+k

)

,

S0,LR = SL
12W

′
4 + SL

13W
′
1e

iL2

(

2π
L

Φ

Φ0
+k

)

,

S0,RR = SR
11 + SR

12W
′
2 + SR

13W
′
3e

iL1

(

2π
L

Φ

Φ0
+k

)

.

Here L = L1 + L2; Φ0 = h/e is the single-electron magnetic

flux quantum. The vector-columns Ŵ and Ŵ ′ are defined in
the following way:

Ŵ = M̂−1Ŷ ,

Ŵ ′ = M̂ ′−1Ŷ ′,

Ŷ =









−SL
21

−SL
31

0
0









, Ŷ ′ =









−SR
21

−SR
31

0
0









,

M̂ =









−1 SL
22 SL

23c[L2, k] 0
0 SL

32 SL
33c[L2, k] −c[L2,−k]

SR
23c[L1, k] 0 −1 SR

22

SR
33c[L1, k] −c[L1,−k] 0 SR

32









,

M̂ ′ =









−1 SR
22 SR

23c[L1, k] 0
0 SR

32 SR
33c[L1, k] −c[L1,−k]

SL
23c[L2, k] 0 −1 SL

22

SL
33c[L2, k] −c[L2,−k] 0 SL

32









.

Here we introduced the functions c[x, y] = e
ix
(

2π
L

Φ

Φ0
+y

)

. The

anti-symmetric matrix Â characterizing the ability of the
ring with oscillating coupling parameters ǫL(t) and ǫR(t) [see,

Eq.(58)] to work as a pump is:

h̄ωÂ = â − ih̄
2

∂2Ŝ0

∂t∂E
,

â =

(

aLL aLR

aRL aRR

)

,

aLL = SL
12δW2 + SL

13

(

δW3 − 1
ωL2

∂W3

∂t

)

e
iL2

(

2π
L

Φ

Φ0
+k

)

,

aRL = SR
12δW4 + SR

13

(

δW1 − 1
ωL1

∂W1

∂t

)

e
iL1

(

2π
L

Φ

Φ0
+k

)

,

aLR = SL
12δW

′
4 + SL

13

(

δW ′
1 − 1

ωL2

∂W ′

1

∂t

)

e
iL2

(

2π
L

Φ

Φ0
+k

)

,

aRR = SR
12δW

′
2 + SR

13

(

δW ′
3 − 1

ωL1

∂W ′

3

∂t

)

e
iL1

(

2π
L

Φ

Φ0
+k

)

.

Here ωLj = v/Li, j = 1,2. The vector-columns δŴ and δŴ ′

are:
δŴ = −ih̄M̂−1 ∂M̂

∂E
∂Ŵ
∂t
,

δŴ ′ = −ih̄M̂ ′−1 ∂M̂′

∂E
∂Ŵ ′

∂t
.

Note that all the quantities depend on energy E = h̄2k2/(2m)
through the phase factors e±iLjk, j = 1, 2 and on time t
through the scattering matrices of wave splitters Ŝβ(t) =

Ŝ(s/a)(ǫβ(t)), β = L,R [see, Eqs.(58)].
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