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Abstract Dynamics of a system containing a linear 
oscillator, linearly coupled to an essentially nonlinear 
attachment, is considered. A damping is taken into ac­
count. It is assumed that some initial excitation implies 
vibrations of the linear oscillator. Envelops of the sub­
system’s kinetic energies are selected to use the nu­
merical investigation of transient in the system. The 
parametrical optimization approach is used to obtain 
regions of effective energy transfer in the system pa­
rameter space. It is demonstrated that this efficient en­
ergy transfer may be obtained for a rather small value 
of the attachment mass.

Keywords Transient. Nonlinear energy transfe: 
Parametric optimization

1 Introduction o
The absorption problem is very important in engineer­
ing. The classical passive absorber in the form of the 
single-DOF linear oscillator was used first by Frahm 
[1] to reduce forced oscillations. He discovered that 
an extinguishing of the resonance vibration is possible
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if the fundamental frequency of the absorber is equal 
to the frequency of the external periodical force. To 
avoid the resonance vibrations near the fundamental 
frequencies of the 2-DOF system containing coupled 
oscillators, Den Hartog [2] used the linear damped ab­
sorber. In many cases the absorption can be made ef­
fective by using linear absorbers with big masses, but 
this is impossible to realize in most concrete systems, 
particularly in civil engineering.

Roberson and Arnold [3, 4] considered the non- 
ed single-DOF absorber connected with a main 
x system by using the spring with a cubic char- 

tic. They showed that the soft connecting spring 
ows to extend the external frequencies interval where 

forced vibration of the main system can be reduced.
Over the past years numerous new devices have been 

used for the vibration absorption and for the reduction 
of the transient responses of structures. It seems inter­
esting to study nonlinear passive absorbers for this re­
duction in nonlinear structures. In literature, nonlinear 
absorbers have been already used like in [3, 4], or [5] 
where a pendulum-type centrifugal vibration absorber 
is used to reduce torsion oscillations, or in [6 ] where 
the pendulum is also used as a vibration absorber to re­
duce response of a flexible cantilever beam, etc. Impact 
absorber was also considered [7 , 8 ].

A description of the energy transfer was first pre­
sented in work by Witt and Gorelik [9]. Authors of this 
work tried to explain in the point of view of the classi­
cal mechanics the effect of the splitting in the spectrum 
of combination scattering. They considered the spring
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pendulum as an example of two nonlinear coupling lin­
ear partial subsystems. It was shown that for any small 
connection the absolute transient of energy of angular 
oscillations to energy of vertical oscillations and back 
takes place for the frequency ratio which is equal to 2 :1 . 
Quickness and intensity of this transient is dependent 
on initial conditions. For some initial conditions, this 
transient is absent (this is a case of periodical solutions), 
and the partial subsystems are synchronized.

Transfer of energy in a case of bending and tor­
sional vibrations of elastic systems is described by 
Kononenko [10]. Transfer of energy was investigated 
too by Struble and Heinbockel [11, 12], Cheshankov 
[13], Celman [14], and Mercer et al. [15]. In a book 
by Starzhinsky [16], the energy transient in Lyapunov 
systems, and systems close to ones, was analyzed. Dy­
namics of the spring pendulum, pendulum on the elastic 
suspension, and elementary particles in cyclic acceler­
ators were considered. It was shown that the problem 
of the energy transfer groups together with a problem 
of dynamics of oscillation chain. First stage of analysis 
is to determine a periodic solution and regions of its 
instability in the system parameter space by using the 
general mathematical theory of parametric resonance. 
Second stage is a determination of bifurcation periodic 
solutions which appear for some critical parameter val­
ues. Asymptotic methods permit to analyze the energy 
transfer.

The energy transient from one nonlinear vibration 
mode to another, is considered in abookbyNayfeh and 
Mook [17]. In [18], it was shown that for some con 
tions this transfer from high-frequency modes to low- 
frequency mode is possible in quasilinear systems. But, 
this transfer is caused by the modes interaction, and the 
one-way channeling of energy is not obligatory. Trans­
fer of energy from high-frequency to low-frequency 
modes of the elastic system nonlinear vibrations was 
described by Hedrih [19, 20].

In papers by Vakakis, Manevitch, Gendelman, 
Bergman, and others [21-25], theoretical investigation 
and some experimental verification on the use of non­
linear localization for reducing the transmitted vibra­
tions in structures subjected to transient base motions 
has been presented. Conditions for the effective energy 
transfer and localization are discussed. The experimen­
tal assembly, containing the main linear subsystem and 
the nonlinear absorber is described in [24]. Authors of 
the works [21-25] define the controlling process of the 
space energy transfer from the place of their initial ap-

md ener
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pearance in the system under consideration to the other 
specific place where the energy, as the final result, is lo­
calized, as the “energy pumping.” It means a controled, 
unidirectional process of the energy transfer to passive 
nonlinear receiver where the energy is localized and di­
minishes in time due to damping dissipation. Energetic 
criterion of this pumping is not proposed. Regions of 
this energy pumping in parameter space of mechanical 
systems were also not obtained.

In the presented paper, the authors use effective 
methods of global optimization to obtain such regions. 
This paper is organized as follows: in Section 2, the re­
cent methods of global optimization are presented, and 
the ^-transformation method, used here, is described 
in detail. Then, in Section 3, a character of transient for 
two mechanical models, namely, for the spring pendu­
lum and for a system of two linearly connected oscilla­
tors, one of them linear, and other nonlinear, is consid­
ered. In particular, envelops of the subsystem’s kinetic 
energies are analyzed. Then, some criterion of the full 
energy transfer from the initially perturbed linear sub­
system to the nonlinear attachment, is formulated. By 
using this criterion, the curves of the full energy transfer 
in place of the second model parameters, are obtained. 
This full energy transfer is illustrated by numerical sim­
ulation. Additional criterion of optimization, implied 
with the energy, which returns to the linear subsystem, 
is discussed and used to obtain corresponding regions 
in the system parameter place. The character of the 
energy transfer in 2-DOF system, containing the es- 
entially nonlinear oscillator with a small mass, which 

'responds to concrete engineering practice, is studied 
Section 4. Regions of the effective energy transfer 

in the parameter place are obtained. In this section, the 
influence of degree of nonlinearity and initial energy 
on the energy transfer is discussed too.

2 Methods of global optimization: Global 
minimum search by using the method 
of ^-transformation
There are a lot of works on determination of optimal 
solutions of theoretical and applied problems, begin­
ning from classic works by Bernoulli, Euler, Lagrange, 
Hamilton, and others. Considering concrete problems, 
it is difficult, or, may be, impossible to obtain properties 
of the input quantities and output parameters analytical 
dependence. So, there exists a problem of construction
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methods which permit to determine optimal solutions 
in a case when assumptions about a nature of function 
under consideration are absent.

2.1 Existent approaches to solve the global 
optimization problems

There are no universally effective algorithms to solve 
the global optimization problems.

All known global optimization methods (GOMs) 
can be divided into two categories: deterministic and 
stochastic [26, 27]. Deterministic methods permit to 
obtain the global solution by using the exhaustive find­
ings over all the problem feasible sets. So, deterministic 
methods lose an effectiveness if the dimension of the 
problem increases. Moreover, such methods need in 
addition a limitation on the criterion function. Stochas­
tic algorithms permit to get away from such problems. 
A majority of stochastic methods permit to estimate a 
value of the criterion function in randomized points of 
the feasible set with the next data processing.

The first method of global optimization was the 
Monte-Carlo method. On the basis of the Monte-Carlo 
method, the multistart method [28] was created. In this 
method, the same subset consisting of the N points is 
chosen (stochastically or deterministically) from some 
set of the problem feasible points. The local descent 
algorithm is started from each point, and the best so­
lution is chosen from all obtained local solutions. This 
method is not very effective, because one and the same 
local solution can be found sometimes. But some 
fective GOMs were based of the principal idea of th< 
multistart method .

It is impossible to present here in detail all exist­
ing GOMs whose description can be found in different 
publications. One mentions here some GOMs [26-33], 
namely, the clustering method which is a modification 
of the multistart method (here a careful selection of 
points of the local finding is made); the topographical 
method; the bisection (covering) and interval (branch- 
and-bound) methods; the branch-and-bound strategy 
which divides the region of finding to a set of many­
dimensional cubes; the tunneling method (a principal 
deficiency of the method is a necessity to solve diffi­
cult nonlinear differential equations); the principal idea 
of the method of simulated annealing comes from the 
physics of the liquid freezing; the main idea of the evo­
lutionary algorithms is taken from the biological evolu­
tion processes; the controlled random search algorithm

which is a method of the direct search; trajectory meth­
ods, in particular, the continuation method.

2.2 The ^-transformation method

At present, it is impossible to predict which GOM 
is the most effective. In this paper, one of the most 
universal and effective GOMs is used, namely, the

-transformation method [34].
The main peculiarity of this method is that an 

object of the analysis is not the criterion function 
F(x 1, x2 xn), but some function ^(Z), which is 
a result of the function F(x1, x2 xn) transforma­
tion. This transformation is based on the definition of 
partition utilized for the Lebesgue integral construc 
tion. This conception can be successfully used to solve 
problems the analysis of which was difficult up to 
now, in particular, problems with the criterion func­
tion F (x 1, x2, . . . , x n) which is not differentiable in a 
point of extremum.

Let E  be some measurable set from the space R N, 
and F ( x ) some function from the class L p (E ). This set 
can be divided to a sequence of the linked subsets e 0 i  
(i =1 , 2 , . . .  , v ) ,  and on each subset e0i the function 
F (x) is convex. For the three-dimensional space this 
situation is illustrated by Fig. 1 .

If E * =  { x  : x e  E ,  F ( x ) > Z }. One defines then as 
m  ( E  *) the measure of the set E  *. One introduces the

me
the

T

ing function: 
m  ( E  *).

This function can 
Lebesgue integral:

£

22

(2 .1 )

be determined by the next
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m  (E l ) = (L)
1 , 1

0 V  ( x i , x n) d x \ . . .  d x n

(2 .2 )
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228 where 0 z  ( x i .  

the form
,  x n) is the characteristic function of

6 V  (xi, 1 , x  e  E

0, E  \  E ' i
Z (2.3)

229
230
231

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260 261

One performs now the Lebesgue’s partition of the 
function F ( x ) .  An interval of the F ( x ) range is divided 
for a set of subintervals,

0 = Z0  <  Z 1 <  ■ ■ ■  <  Z v  <  ■ ■ ■  <  Z * = maxF (x).
(2.4)

Note that a finding of the minimum is principally the 
same.

It can be shown [34] that the transformed func­
tion ^(Z) has the following principal properties: the 
function, independently of the prototype F (x ) dimen­
sion, is a function of the single variable; the func­
tion is monotone and nonincreasing one for all F ( x ) e 
L p (E ); a value Z *, when ^(Z) = 0, is equal to a 
value of the function F (x) e  L p  (E ) global extremum, 
m  { x  : F ( x ) = Fmax} = 0 .

Analytical dependence between the functions F (x ) 
and ^(Z) can be obtained in explicit form only in 
simplest cases. Other possibility of the function ^(Z 
construction consists in its determination in differen 
points, next approximation and extrapolation of th 
function, and in a determination of the function ^(Z) 
zero, which corresponds to a value of the function F ( x ) 
global extremum.

To determine the function ^(Z) in some point Z v, statistical tests can be used. It is conditionally assumed 
that a measure of the set E , on which the function F (x) 
is defined, is equal to the unit, that is, m  (E ) = 1. Let us 
define later a value of the measure m  { x  : F (x) > Z v} 
with respect to m (E ). So, it depends on the determina­
tion of some probability, which can be presented in the 
form of the integral (2.2). The probability P v  can be 
calculated by the next simple way. In fact, after some 
number s  of statistical tests, it is possible to calculate 
the number of events %v, for which F (x) > Z v, and to 
calculate a frequency or, a statistical probability
P v  —  H v / S . (2.5)

According to the law of big numbers, if the number 
s  increases, the frequency tends (on probability) to the 
desired value P v  =  m ( E*).

So, the determination of the desired measure of 
the set E * consists in conducting of statistical tests 
for which the variables x1; x 2 , . . . , x i  , . . . , x n  take 
equiprobable random values. Each test consists in de­
termination of the function F  (x1; x 2 , - - - , x n) value for 
given values of independent variables, and in compar­
ison of the value with the given level Z v. Depending 
on results of this comparison one has these points x , 
for which in the v-th test the inequality F ( x ) > Z v  is 
satisfied. Then, the approximate value of the measure 
of the set E * is determined.

As a result, by using the statistical tests method, 
one obtains the random function ^(Z) instead of 
the function ^(Z). Construction of this function per­
mits determination of a scalar value of the global 
extremum, but coordinates of it remain unknown. 
But, is it possible to determine all coordinates of 
the function F  (x1; x 2 , . . . , x n) global extremum from 
the data obtained in statistical tests, which are 
used to construct the function ^(Z). For this, the 
function x(Z) must be determined, where x t  is a 
mean value of such x i j ( i  =  1 , . . . , n ;  j  =  l ,  . . . , s ) ,  
for which F  (x1; x 2 , . . . x n) > Z .  Calculation of the 
mean values x ^  for each level of the ith coordi­
nate can be made by the formula A3 (see Ap- 

ix). As stated earlier, by substitution a value 
ich is the function F (x) global extremum, to 
one obtains the i th coordinate of the global 

emum.
So, to solve the complex many-dimensional op­

timization problems by using the ^-transformation 
method, it is necessary to determine values of the func­
tions ^(Z) and x \  ( Z ) in different points Z v, then, ap­
proximating the obtained data, to solve the formulated 
problem by method of extrapolation.

Algorithm of the ^-transformation method is de­
scribed in the Appendix.

3 Energy transfer in some mechanical models
3.1 Energy transfer in a spring pendulum

One considers the transfer of energy in a spring pendu­
lum (Fig. 2). This problem was investigated in [9, 16].
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Fig. 2 The spring pendulum

Differential equations of the system motion are the 
following:

p  0 +  2p  p  0 =  — g  p  sin 0
p  —  p 0 2  =----- (p — l ) + g  cos 0.m

(3.1)

308
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It was shown in [16] that for some values of the sys­
tem parameters a disruption of the vertical vibrations 
takes place as a result of arbitrary small transversal 
perturbations.

One develops the numerical investigation of the 
Equations (3.1) in the point of the energy transfer and 
in some vicinity of the point. In this system the point 
is determined by the parameter y  =  m g , and the 
ergy transfer takes place if y  =  0.3333. Results of thi 
numerical calculations are presented in Fig. 2. It is pre 
sented as a dependence of the kinetic energies T p  and 

1  m  p2  is a kinetic energy of the 
1  m l 2 d2  is akinetic

T 0 of time. Here T p  =
vertical vibration mode, and T $  =  2  

energy of the angular vibration mode. The kinetic en­
ergy maximum points are joined. We call correspond­
ing lines as the kinetic energy envelops. In Fig. 3, an 
envelop of the vertical vibration mode kinetic energy 
is depicted by solid line, and an envelop of the angular 
vibration mode kinetic energy is depicted by dot-and- 
dash line.

We can see from Fig. 3 that in some vicinity of 
the critical value of the parameter y  =  0.333, there 
is a decrease in the kinetic energy T p  amplitude val­
ues, and the appearance of a kinetic energy T ^  peak. 
It is clear that all four diagrams illustrate a process 
of the energy transfer from one vibration mode to the

0 10 20 30 40 50 60 70 SO 90 100

(b)

(d)

Fig. 3 Diagrams of envelops of kinetic energies of the vertical 
and angular vibration modes, Tp and T$, for different values of 
the parameter y: (a) y = 0.667, (b) y = 0.5, (c) y = 0.333, (d) 
Y = 0.266. Here - Tp,---------Td
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Fig. 4 System of weakly coupled linear and nonlinear oscillators

other. In addition, the full transfer of energy happens 
for y  =  0.3333.

3.2 Energy transfer in 2-DOF system containing an 
essentially nonlinear oscillator

One considers the energy transfer in a 2-DOF system 
(Fig. 4), containing the weakly coupled linear and non­
linear oscillators.

One has the following differential equations of 
motion:

m  1  y i  +  e k  yi + cy3  + e  (yi - y 2)  = 0  

m 2 y2  + e k  y 2 +  C 2 y 2 +  S  (y2  - yi) = 0 . (3.2)

343
344
345
346
347
348
349
350
351
352
353
354
355
356

Here £  ^ 1, other parameters have an order O  (1). Such 
models were considered in some works, for example, 
in works by Vakakis, Manevitch et al. Analysis of sys­
tems with such essentially nonlinear absorbers permits 
to select principal advantages of the nonlinear absorp­
tion, in particular, the effect of the energy localization. 
In engineering practice, there is a possibility to obtain 
nonlinear absorbers with very small linear compon 
in elastic characteristic.

A behavior of the system by using the envelops 
kinetic energies (these envelops were introduced in 
Section 3.1) of two subsystems is considered. Later, 
the adduced values of the kinetic energies of two par­
tial oscillators are presented:

T l  =  m T  = m  2 2 h
(3.3)

357
358
359
360
361
362
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364

The kinetic energy envelops obtained for the sys­
tem (3.2) are shown in Fig. 5 for m  1  = m 2  = 1, 
X  =  0.5, c2  = 0.9, c  =  5.0, £  =  0.1 and for the next 
initial values: y1 (0 ) = y2 (0 ) = 0 , y1 (0 ) = 0 ; y2 (0 ) = 
V2 h, where h  is the system energy at the moment; 
t  =  0 (here h  =  0.8). Here and later, a dotted line rep­
resents an envelop of the adduced kinetic energy of ini­
tially perturbed linear oscillator. Solid line represents

\  :
_V—___1  ■  

i

’ ■ )  i
■ \  :

__............

. . . . . . . . . . . r v _ 1

___
\

\  ^
\

y  i  i i  i i

------

Fig. 5 Diagram of the kinetic energy envelops for the system 
(3.2)

ain sp°r 
ent vd°ST

the same for the nonlinear absorber. Dot-a 
represents the same for the linear oscil 
attached nonlinear subsystem.

By considering this diagram the next problem can 
be formulated: are there some parameters of the system 
when the kinetic energy envelop of the linear initially 
perturbed subsystem turns into zero, and the peak of 
such envelop of the perturbed nonlinear system simul­
taneously appears. Such case will be assumed as a case 
of the full energy transfer.

One selects in Fig. 6  principal parameters which 
cterize the energy transfer. The point T2min corre- 

to the first minimum of the kinetic energy en- 
or the initially perturbed linear subsystem. The

Fig. 6 Principal parameters of a diagram of the kinetic energy 
envelops
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Fig. 7 Curve of the full energy transfer in plane (s, c)

point T 1  max represents a maximum of this envelop of 
the nonlinear subsystem. The point T2max represents 
the second maximum of this envelop for the linear sub­
system, and the point t2min is a time of achievement 
of the first minimum of this envelop for the perturbed 
linear subsystem.

One studies in detail the energy transfer in the 
system (3.2). One takes the system parameters and 
initial values which were used earlier. By using the 
proposed criterion of the full energy transfer and the

-transformation method, the curve of the full energy 
transfer in a plane of the system parameters (s, c) was 
obtained. This curve is shown in Fig. 7.

One selects some point on the curve, and observes a 
change of the system vibration energy. As previously, 
the dotted line represents on diagram the envelop of the 
adduced kinetic energy of the initially perturbed linear 
oscillator, the solid line represents the same for the non­
linear absorber, and the dot-and-dash line represents 
the same for the linear oscillator without the attached 
nonlinear oscillator. Envelops are shown in Fig. 8 for 
the point of the full energy transfer (T2min < 0.0001), 
namely, s  = 0.09268, c  = 5.0. We can see here that the 
full energy transfer from the initially perturbed linear 
oscillator to nonlinear one takes place on the time inter­
val from zero to 40. At the moment t  =  40 all energy 
is concentrated in the nonlinear absorber.

The transient in the system (3.2) in point of the full 
energy transfer is shown on the Fig. 9. We can see that 
the vibration amplitude of the initially perturbed sys­
tem decreases up to zero on the time interval from zero 
to 40. At that time the vibration amplitude of the non­
linear attachment increase appreciably. Beginning with

0 10 20 30 40 50 60 70 80 90 100 

t(c)
Fig. 8 Envelops of the kinetic energies in point of the full energy 
transfer (s = 0.09268, c = 5.0)

9 Transient in the system (3.2) in point of the full energy 
ransfer

some moment close to t  = 30 the vibration amplitudes 
of the linear subsystem are smaller than the vibration 
amplitudes of the attached nonlinear subsystem in three 
and more times. Then, the back energy transfer to the 
linear subsystem happens. Vibration amplitudes of the 
main linear oscillator increase. Then the energy anew 
leaves the linear subsystem. So, one observes the phe­
nomenon similar to that which was observed in the sys­
tem (3.1). The sequential transfer from one vibration 
mode to another one takes place.

Let us see a behavior of the system under consider­
ation, if the parameter s, representing the stiffness of 
the connected spring, is relatively small. One can see 
from the Figs. 1 0  and 1 1  that in this case the energy 
transfer from the initially perturbed linear oscillator to
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Fig. 10 Kinetic energy envelops for £ = 0.09

Fig. 11 Transient for e = 0.09

427 the nonlinear one is made/becomes weaker. Evidently,
428 this is caused by the weak connection between oscilla-
429 tors, which hinders the energy transfer to the nonlinear
430 attachment.
431 Let us consider a behavior of the system under con-
432 sideration, when the parameter £, representing the stiff-
433 ness of the connected spring, increases (Figs. 12-15).
434 One has from Figs. 12-15 that an increase of £  leads
435 to more rapid energy transfer from the perturbed oscil-
436 lator to unperturbed one. A peak of envelop of the un-
437 perturbed mass kinetic energy increases together with
438 increasing of £, and it takes place for a smaller time
439 interval. But, in this connection, the full energy trans-
440 fer from the perturbed oscillator to unperturbed one is
441 absent. There is a significant energy return back to the
442 perturbed oscillator. Figure 14 shows that initially on
443 the time interval from 0 to10 the rapid transfer of kinetic
444 energy from the perturbed linear oscillator to nonlinear
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Fig. 12 Kinetic energies envelops for £ = 0.2
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Fig. 14 Kinetic energy envelops for £ = 0.5
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Fig. 15 Transient for s = 0.5
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Fig. 16 Envelops of the kinetic energy in point of the full energ 
transfer, when c = 2.5; s = 0.1933
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0.3

one takes place. But this is not the full energy transfer.
Part of it remains in the perturbed oscillator. Then on 
the time interval from 10 to 19, this envelop of the ki­
netic energy of the linear oscillator increases, while the 
kinetic energy of the nonlinear one sharply decreases.
So, we conclude that an increase of the coefficient s  
leads to a larger return of the energy. The sequential 
transfer of the energy from one oscillator to another 
happens.

One considers anew a curve of the full energy trans- o
fer (Fig. 6). Let us analyze the energy envelops when 0

we move to the left or to the right on the curve.
Some part of calculation of envelops of the kinetic 

energy are shown in Figs. 16 and 17 for different values . 
of the parameters c  and s . It is possible to conclude tran*( that a decrease of c  and an increase of s  leads to a 
more rapid energy transfer from the initially perturbed ,,
linear oscillator to the nonlinear one. But, in this case, 
the larger return of the energy to the linear subsystem L"
takes place. Increase of c  gives us a reduction of the 
energy return to the linear oscillator.

The conclusion stated earlier is confirmed by 
Figs. 18 and 19, wherein points of the full energy trans­
fer the relations of the return energy value (after the full 
energy transfer) T2 max, and a time of the passage time of 
the full energy transfer t2min, are presented, depending 
on the change of the parameter c .

One considers now a problem of the energy trans­
fer in the system of two connected oscillators from the 
point of view of the absorption problem. In this prob­
lem the fast energy transfer from the main system to 
absorber is principal.

ie full energy*LO£
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17 Envelops of the kinetic energy in point of the full energy 
ransfer, when c = 6; s = 0.0818
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Fig. 18 Relation of T2max depending on c
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Fig. 19 Relation of t2min depending on c
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Fig. 20 Classification of points of the full energy transfer

Additional limitation to the precedent criterion is in­
troduced: is introduced it needs to minimize too T2max (Fig. 6), that is the second maximum of the kinetic en­
ergy envelop of the initially perturbed linear oscillator. 
It forms as a result of the energy return from the non­
linear absorber to linear one. Introducing this criterion, 
we can to classified points of the full energy transfer 
(Fig. 7) on dependence of T2max. Points on the Fig. 20 
represent values of parameters for which T2max < 0.5, 
triangles represent a case when 0.5 < T2max < 1, and 
circles represent a case when T2max > 1.

Obtained results permit to formulate the next more 
general problem of the parametric investigation of the 
energy transfer: to find the values of the parameters 
c  and s, when the envelop of the adduced kinetic en­
ergy of the initially perturbed subsystem tends to zero.
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Fig. 21 Region of the parameters c and s, where the 
transfer takes place

energy O£
In a neighborhood of this minimum the maximum of 
envelop of the nonlinear absorber exists.

Set of points, obtained by using this additional cri­
terion, are shown in Fig. 21, where the solid line cor­
responds to a maximal extinguishing of the initially 
perturbed oscillator energy (r2min < 0.0001). Set of 
parameters, bounded by dotted lines, corresponds to 
the limitations T2min < 0.05 and T2max < 0.05. Re­
gion of the parameter values where T2mn < 0.1 and 

< 0.1, are limited by dot-and-dash lines.

haracter of the energy transfer in 2-DOF 
system containing the essentially nonlinear 
oscillator with a small mass
One considers now a case, when the attached nonlinear 
absorber has a mass which is essentially smaller than 
that of the linear subsystem. It corresponds to the real 
engineering practice when a use of the absorbers with 
big mass is impossible. The damping coefficient X is 
equal here to 0.1.

The energy envelops in a point of the full energy 
transfer for m 1 = 0.1 is shown in Fig. 22, and the cor­
responding transient is shown in Fig. 23. Note that in 
Fig. 23, showing the transient, the solid line represents 
vibrations of the initially perturbed linear oscillator 
with attached absorber, and the dotted line represents 
such vibrations without this absorber. We can see here 
the essential extinguishing of the main linear subsystem
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Fig. 22 Energy envelops in a point of the full energy transfer 
for m 1 = 0.1
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Fig. 23 Transient for linear subsystem with absorber (solid line 
and without absorber (dotted line) when m 1 = 0.1

520 vibrations if this nonlinear absorber exists. So, <
521 ing the mass of absorber, the rapid one-way channeling
522 of energy in the system under consideration is found.
523 The next criterion of efficiency of the energy transfer 

A2524 (Fig. 24) is now introduced. Namely:
525 The energy transfer must be effected for a fixed and
526 not large time interval. (For example, here t = 20 is
527 introduced). For a quantitative valuation of this trans-
528 fer one estimates the following: if a loss of energy for
529 the initially perturbed linear oscillator T̂ -T1 during this
530 time interval is equal to 70% or more, the energy trans-
531 fer is considered as effective (or optimal). Moreover,
532 this condition has to be fulfilled in the point T2max,533 that is in a point of the second maximum of the kinetic
534 energy T1 envelop.
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Fig. 24 Region of the effective energy transfer
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Fig. 25 Envelops of kinetic energies in a point of the full energy 

er (c = 0.018, s = 0.04)

For the system (3.2), with the parameters m 1 = 
0.1, m2 = 1, X = 0.1, c2 = 0.9, s1 = 0.1 and ini­
tial conditions j1(0) = y2(0) = 0, ,y1(0) = 0; y2(0) = 
V2h, where h = 0.8, the region of the effective energy 
transfer in a place of the parameters (c, s) was obtained. 
Boundary of this region is marked by boldface line in 
Fig. 26. Thin line represents a curve of the full energy 
transfer for this case.

One of the solutions from the region is presented in 
Figs. 25 and 26.

Investigation of influence of degree of nonlinearity 
and initial energy to the energy transfer was made too. 
Namely, three cases for the system (3.2) are considered: 
(1) the anchor spring is linear; (2) the anchor spring 
has a cubic nonlinearity; (3) the anchor spring has a 
fifth degree of nonlinearity. Corresponding points are
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Fig. 26 Transient for c = 0.018, s = 0.04

Fig. 27 Points of the full energy transfer in systems with differ­
ent degree of nonlinearity and different initial energy

551
552
553
554
555
556

presented in Fig. 27 by using circles (li 
squares (cubic nonlinearity), and black points (fifth- 
degree nonlinearity) on a place of the parameters (c,s). 
It is very interesting that points of the full energy trans­
fer for the nonlinear spring are different for different 
values of the initial

5 Conclusions
In the present study, an analysis of the energy transfer in 
some 2-DOF nonlinear mechanical systems have been 
carried out. The effective method of global optimiza­
tion, namely, the V-transformation method, is used 
here. Principal characteristics of the energy transfer, 
namely, envelops of the subsystems kinetic energies,

are selected to use the numerical investigation of this 
process. Criterion of the full energy transfer is proposed 
and discussed. By using this criterion, the curves of the 
full energy transfer in a place of the system parameters, 
are obtained. This full energy transfer is illustrated by 
numerous numerical simulations. Additional criterion 
of optimization, implied with the energy, which returns 
to the linear subsystem, is discussed and used to obtain 
corresponding regions of the effective energy transfer 
in the system parameter place. Regions of the effective 
energy transfer in the parameter place are obtained. In­
fluence of degree of nonlinearity and initial energy to 
the energy transfer is discussed too. It seems that the 
proposed approach can be used to investigate the trans­
fer of energy in different nonlinear systems.

Appendix

Input data is the followi 
and high limitations of the pa

nethod is pre-The algorithm of the -transformation ] 
sented here.

are vectors of lower 
ter limitation; f (...) 

is a procedure of calculation of the minimized function, 
N is the number of the sketch points.

Output data is the following: x as a point of the 
minimum, f (x ).

er-

(linear spring), 
k points

1. The values x 1 ,  x 2 , . . . ,  x t , . . . ,  x n  are chosen by 
random low with uniform distribution.

2. A value of the function F  (x1, x2, . . . , x n) is calcu­
lated.
The points 1 and 2 s times are repeated.

3. The sup F  and inf F  among s  values of the function 
F (x1, x2, . . . , x n) are determined.

4. The interval [(sup F  —  inf F ) / 2 ,  sup F ] is divided 
into k  equal components.

5. For all k , Z v ( v  = 1, 2 , . . . , k ) and ^ are deter­
mined according to the formulae:

Zv = (sup F  —  inf F )/2 + (v — 1)AZ (A.1)
V v  =  § v / s ,  A Z  =  Z v —1 — Zv—2 (A.2)

where § v  is a number of events when, for the given 
§v, one has F  ( x ) > Z v.

6. The obtained data are approximated so as to deter­
mine the parabolic approximation.
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603
604
605
606
607
608 609

7. The formulated problem is solved by calculating 
the roots Zi and Z2 of the parabola.

8. The smaller values of the roots are found, cor­
responding to a scalar value Z  * of the function 
F  ( x 1 ,  x 2 , . . . , x n  ) global extremum Fmax.

9. For each Z v  ( v  =  1, 2 , . . . , k )  a  mean value X i  ( i  =  
1, 2 , . . . ,  k) is calculated by the formula:

X i  = / H v (A.3)

627
628

631
632

635
636

639
640

643
644

647
648

10. The coefficients of parabolas which approximate 
the functions x \  ( Z ) = (i = 1 , . . . , k ) are deter­
mined.

11. The value Z * ,  obtained in P. 8, is substituted to the 
expression, which was determined in P. 10, then 
one determines i  th coordinate x *  of the global ex­
tremum.

12. The values x *  are substituted to the function 
F  (x1, x 2 , . . .  , x n) expression and one determines 
the required value F * .

13. The value F *obtainedinP. 12 is compared, with the 
scalar value of the global extremum Z  * ,  determined 
in P. 8.
Equality of both values shows, with some error, that 
the problem is solved correctly.

References
1. Frahm, H.: Device for Damping Vibrations of Bodies. US 

Patent 989958, 1909
2. Den Hartog, J.P.: Mechanical Vibrations. McGraw-H] 

New York (1934)
3. Roberson, R.E.: Synthesis of a nonlinear dynamic vibration 

absorber. J. Franklin Inst. 254, 205-220 (1952)
4. Arnold, F.R.: Steady-state behavior of systems provided with 

nonlinear dynamic vibration absorbers. Trans. ASME. J. 
Appl. Mech. 22, 487-492 (1955)

5. Shaw, S.W., Wiggins, S.: Chaotic motions of a torsional vi­
bration absorber. Trans. ASME. J. Appl. Mech. 55, 952-958 
(1988)

6. Cuvalci, O., Ertas, A.: Pendulum as vibration absorber for 
flexible structures: experiments and theory. Trans. ASME J. 
Vib. Acoust. 118, 558-566 (1996)

7. Karyeaclis, M.P., Caughey, T.K.: Stability of a semi-active 
impact damper: Part I—Local behavior. Trans. ASME J. 
Appl. Mech. 56, 926-929 (1989)

8. Karyeaclis, M.P., Caughey, T.K.: Stability of a semi-active 
impact damper: Part II—Global behavior. Trans. ASME. J. 
Appl. Mech. 56, 930-940 (1989)

9. Gorelik, G.S., Witt, A.A.: Swing of an elastic pendulum as an 
example of two parametrically bound linear vibration sys­
tems. J. Tech. Phys. (USSR) 3(2-3), 294-307 (1933) (in 
Russian)

10. Kononenko, V.O.: On coupled bending-torsional vibra- 651 
tions. Bending-torsional vibrations and critical veloci- 652 
ties. Not. USSR Acad. Sci. 2, 194-237 (1953) (in 653 
Russian) 654

11. Struble, R.A., Heinbockel, J.H.: Energy transfer in a beam- 655 
pendulum system. Trans. ASME. J. Appl. Mech. 29, 590- 656 
592 (1962) 657

12. Struble, R.A., Heinbockel, J.H.: Resonant oscillations of a 658 
beam-pendulum system. Trans. ASME. J. Appl. Mech. 30, 659 
181-188 (1963) 660

13. Cheshankov, B.I.: Resonance vibrations of a special double 661 
pendulum. Appl. Math. Mech. (PMM USSR) 33(6), 1112- 662 
1118 (1969) 663

14. Tsel’man, F.K.: On pumping transfer of energy be- 664 
tween non-linearly-coupled oscillators in third-order reso- 665 
nance. Appl. Math. Mech. (PMM USSR) 34(5), 957-962 
(1970)

15. Mercer, C.A., Rees, P.L., Fahy, V.J.: Energy flow between 
two weakly coupled oscillators subject to transient excita- 669 
tion. J. Sound Vib. 15(3), 373-379 (1971) 670

16. Starzhinskii, V.M.: Applied Methods of Nonlinear Vibra- 671 
tions. Nauka, Moscow (1977) (Russian) 672

17. Nayfeh, A.H.,Mook, D.: Nonlinear Oscillations. Wiley, New 673 
York (1984) 674

18. Nayfeh, S.A., Nayfeh, A.H.: Energy transfer from high to 675 
low-frequency modes in a flexible structure via modulation. 676 
ASME J. Vib. Acoust. 116, 203-207 (1994) 677

19. Hedrih (Stevanovic), K.: Interpretation of the transfer of en- 678 
ergy from high-frequency to low-frequency modes by aver- 679 
aging asymptotic method Krilov-Bogolybov-Mitropolsky. 680 
In: Proceedings of the Second International Conference on 681 
Asymptotics in Mechanics, pp. 97-104. Saint-Petersberg 682 
State Marine Technological University, Saint-Petersberg, 683 
Russia (1997) 684

20. Hedrih (Stevanovic), K.: Multifrequency forced vibrations 685 
thin elastic shells. In: CD Proceedings of the Fifth 686

/1ECH Nonlinear Dynamics Conference, pp. 2417- 687
6. Eindhoven University of Technology, Eindhoven, The 688

etherlands (2005) 689
1. Gendelman,O.V:Transitionofenergytononlinearlocalized 690

mode in highly asymmetric system of nonlinear oscillators. 691
Nonlinear Dyn. 25, 237-253 (2001) 692

22. Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear 693 
mechanical oscillators: Part I. Dynamics of the underlying 694 
Hamiltonian systems. Trans. ASME. J. Appl. Mech. 68, 34- 695 
41 (2001) 696

23. Gendelman, O., Manevitch, L.I., Vakakis, A.F., M’Closkey, 697 
R.: Energy pumping in nonlinear mechanical oscillators: Part 698 
II. Resonance capture. Trans. ASME. J. Appl. Mech. 68,42- 699 
48 (2001) 700

24. McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Experi- 701 
mental study of non-linear energy pumping occurring at a 702 
single fast frequency. Int. J. Non-linear Mech. 40(6), 891- 703 
899 (2005) 704

25. Manevitch, L., Gendelman, O., Musienko, A.I., Vakakis, 705 
A.F., Bergman, L.A.: Dynamic interaction of a semi-infinite 706 
linear chain of coupled oscillators with a strongly nonlinear 707 
end attachment. Physica D 178, 1-18 (2003) 708

26. Ali, M., Törn, A., Viitanen, S.: Stochastic global optimiza- 709 
tion: Problem, classes and solution techniques. J. Glob. Op- 710 
tim. 14, 437-447 (1999) 7n

£667
668

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

625

626

629
630

633
634

637
638

641
642

645
646

649
650

^ Springer



P1: KEF
SJNL2588-02-11071-9198 styleBvl.l.cls (2005/11/29 v1.0 LaTeX2e Springer document class) January 1, 1904 13:3

Nonlinear Dyn

716
717

712 27. Rinnoy Kan, A.H.G., Timmer, G.T.: Stochastic global opti-
713 mization methods. Math. Program. 39, 27-78 (1987)
714 28. Törn, A., Viitanen, S.: Topographical global optimization.
715 In: Floudas, C.A., Pardalos, P.M. (eds.) Recent Advances 

in Global Optimization, pp. 384-398. Princeton University 
Press, Princeton, NJ (1992)

718 29. Evtushenko, Yu.G., Potapov, M.A., Korotkich, V.V.: Recent
719 Advances in Global Optimization, pp. 274-297. Princeton
720 University Press, Princeton, NJ (1992)
721 30. NemhausterG.L., Pruul E.A., RushmeierR.A.: Branch-and-
722 bound and parallel computation: A historical note. Oper. Res. 

Lett. 7, 65-69 (1988)

31. Gomez, S., Levy, A.V.: The tunneling method applied to 723 
global optimization. In: Boggs, P.T. (ed.) Numerical Opti- 724 
mization, pp. 213-244. SIAM, Philadelphia, PA (1985) 725

32. Michalewicz, Z.: Genetic Algorithms + Data Structures = 726 
Evolution Programs, 3rd edn. Springer-Verlag, New York 727 
(1996) 728

33. Diener, I.: Trajectory methods in global optimization. In: 729 
Horst, R., Pardalos, P.M. (eds.) Handbook of Global Opti- 730 
mization, pp. 649-668. Kluwer, Dordrecht, The Netherlands 731 
(1995) 732

34. Chichinadze, V.K.: Decision of Non-Convex Problems of 733 
Optimization. Nauka, Moscow (1983) (in Russian) 734

A

^ Springer



P1: KEF
SJNL2588-02-11071-9198 styleBv1.1.cls (2005/11/29 v1.0 LaTeX2e Springer document class) January 1, 1904 13:3

Queries to Author
A1: Au: Please note references have been renumbered to provide for sequential arrangement. Please check. 
A2: Au: Please check the citation of Fig. 24 for appropriateness

o
c

D£

15


