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Abstract

This paper deals with traveling waves in non-linear in®nite elastic systems (chains and rods). A passage to a long
wavelength approximation is realized. Conditions of the solitary waves existence are analyzed. The waves with
regard to elastic impacts have been investigated. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The study of non-linearities due to vibro-impacts is of signi®cant practical importance since they are
often encountered in engineering practice. The analysis of the dynamics of strongly non-linear problems
requires the development of special analytical techniques suitable for handling strong non-linearities.
The problems are analyzed in various publications.

Analytical and numerical studies of vibro-impact oscillations are carried out by Masri and Caughey
(1966), by matching linear solutions computed before and after the time instants of impacts. Generally
theory of stereomechanical and quasiplastic impacts is presented by Nagaev (1985). Studies of vibro-
impact oscillations with analytical/numerical PoincareÂ maps and geometrical techniques were performed
by Shaw and Holmes (1983) and Shaw and Shaw (1989). The applications considered were basically
single-DOF systems. Ivanov (1993) studied vibro-impact oscillations introducing auxiliary phase planes
and proposed (Ivanov, 1994) a uni®ed approach to the analysis of impact oscillations. Also he studied
the problem of multiple impacts (Ivanov, 1995). Zhuravlev (1977) introduced non-smooth spatial
transformations of variables to eliminate discontinuities in the equations of motion of the strongly non-
linear vibro-impact systems. The method of non-smooth temporal transformations was developed by
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Pilipchuk (1996). Numerical and experimental investigations of some elastic and rotor-dynamic systems
with impact non-linearities were carried out in Emaci et al. (1997). Chaotic motions of vibro-impact
systems were studied in works by Shaw and Holmes (1983), Moon et al. (1991), Ivanov (1994),
Valkering (1994), Farahanchi and Shaw (1994), Han and Luo (1995). Methods of nonlinear and normal
modes theory (Vakakis et al., 1996; Mikhlin, 1996) were used in vibro-impact problems in a work by
Mikhlin et al., 1998.

Studies of traveling waves in non-linear elastic systems were carried out by many researchers.
Solitary traveling longitudinal waves were analyzed by Ostrovsky and Sutin (1977); the re¯ection of
the soliton at almost ®xed and almost free ends were detected in a numerical simulation by
Soerensen et al. (1984, 1987) and Clarkson et al. (1986) studied longitudinal wave propagation in
a non-linear elastic rod modeled by the non-linear hyperbolic equation, containing odd non-
linearities (u 3 and u 5) and only one dispersive term with mixed fourth-order derivatives. Samsonov
(1995) reduced the initial highly non-linear elastic wave problem governed by coupled PDE to the only
one `double dispersion' equation, describing longitudinal strain waves in a rod; before, he obtained some
results in the framework of the KdV approach (Samsonov, 1984). Solitary traveling waves were
analyzed by Toda (1981) in chain systems with special potential. Potapov (1985) determined a principal
possibility of the solitary transversal waves existence in essentially non-linear in®nite rods.

Although the stability problem is not considered here, some works on the subject will be
referred. Zhuravlev (1977) and Vedenova et al. (1985) studied a stability of some vibro-impact
motions by employing averaged equations and eliminating a discontinuity in the impact points.
Nagaev (1985) considered a stability of vibro-impact motion with a number of inelastic impacts
equal to in®nity. The author analyzed a one-dimensional system of n solids with masses change by
a special exponential rule. Local and global bifurcations of periodic orbits in systems with vibro-
impacts and an appearance of chaotic motions were examined in some recent works by Shaw and
Holmes (1983), Shaw (1985), Ivanov (1994), Valkering (1994), Farahanchi and Shaw (1994) and
Han and Luo (1995).

We analyze here traveling transversal waves in non-linear in®nite chains and rods with regards to
elastic impacts. The work includes: a passage to a continual, long wavelength approximation in non-
linear in®nite chain systems (Section 2), one uses here the translation operator approach; a passage to
the long wavelength approximation in non-linear in®nite rod system in the framework of Kirchho�
hypothesis (Section 3); an analysis of the solitary waves equations obtained previously (Section 4); an
analysis of vibro-impact motions: the solitary waves with impacts in chains (Section 5) and periodical
vibro-impact motions (Section 6) are considered.

2. Non-linear transverse waves in chains

Consider transverse waves in a symmetric in®nite chain consisting of particles (masses of the particles
are equal to m ) connected by linear springs (Fig. 1). Sti�nesses of the springs are equal to g. The chain
is found between two rigid barriers (boundaries) with gaps equal to L; a is the distance between
undisplaced particles.

The renewal coe�cients are equal to 1.
The impact is absolutely elastic. The solitarywaves exist only in this case because if the energy fails at the time

of impact, thesolitarywavescollapse.
The displacement vector of the particle with the number n is presented as:
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�Sn �
�

Wn

Vn
n � 0, 21, 22, . . . : �1�

where Vn=an+Un.
Here Wn is a relative transverse displacement, Un is a relative longitudinal displacement and Vn is an

absolute (from zero) longitudinal displacement.
One assumes that the functions continuously depend on n:

Wn �W�n, t�, Un � U�n, t�:
Let

an � ��Wn ÿWnÿ1�2 � �a� Un ÿ Unÿ1�2�1=2 �j �Sn ÿ �Snÿ1 j :
The equations governing the transverse motions of this system are expressed as:

mW 00
n � g�1ÿ a=an��Wn ÿWnÿ1� ÿ g�1ÿ a=an�1��Wn�1 ÿWn� � P�W� � 0

mU 00n � g�1ÿ a=an��a� Un ÿ Unÿ1� ÿ g�1ÿ a=an�1��a� Un�1 ÿ Un� � 0

n � 0, 21, 22, . . . : �2�
P(W) is the elastic impact function. It is impossible to utilize di�erent forms of the function, for
example, power form (Pilipchuk, 1996; Manevitch et al., 1989):

P�X � � C�X=L�2nÿ1 �C � const:, n41�:
It will be restricted to low-frequency (long wavelength) approximation and will be realized in a passage
to a continual system in place of system (2).

Consider the function F(n ) de®ned on the integer number set. One writes the Taylor formula for F(n ),
assuming the function is continuous and in®nitely di�erent:

Fig. 1. Symmetric in®nite chain consisting of particles connected by linear springs. Masses of the particles are equal to m. Sti�-

nesses of the springs are equal to g. The chain is found between two rigid boundaries with gaps equal to L; a is the distance

between undisplaced particles.
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F�n21� � F�n� � @

@n
�F�n���21� � @ 2

@n2
�F�n���21�2=2!� � � �

�
�
1� �21� @

@n
� �21�2

2!

@2

@n2
� � � �

�
F�n� � e2@ =@nF�n�, �3�

utilising an operator form of the notation.
The operator (3) is used by Pilipchuk (1996) and Manevitch et al. (1989), and called `a translation

operator'. There are obvious combinations:

F�n� ÿ F�nÿ 1� � �1ÿ eÿ@ =@n�F�n� �
 X1

k�1

�ÿ1�k�1
k!

@k

@nk

!
F�n�

F�n� 1� ÿ F�n� � �e@ =@n ÿ 1�F�n� �
 X1

k�1

1

k!

@k

@nk

!
F�n�: �4�

Introduce the operators:

A � 1ÿ eÿ@ =@ n; B � e@ =@ n ÿ 1: �5�

One passes to a continual system replacing the discrete variable n by a continuous variable x.
Consider traveling stationary waves. Corresponding solutions are described by functions of a single

argument named `phase',

F � kxÿ ot,

where: x is the space coordinate; k is the wavenumber, k = 2p/l; l is the length of the wave; o is the
frequency of the traveling wave.

Let W=W(F ), U=U(F ), V=V(F ), respectively,

@

@n
� �ka� d

dF
,

@

@t
� ÿo d

dF
; V�F� � na� U�F� and @V=@n � a� @U=@n, etc: �6�

Using the formulas, one obtains new representations for the operators A, B from (5):

A �
X1
r�1

�ÿ1�r�1
r!
�ak�r @

r

@Fr

B �
X1
r�1

1

r!
�ak�r @

r

@Fr �ka� 1, this is a long wavelength approximation�: �7�

Note that a passage to a continual system of high-frequency approximation is possible using a
continualization of an envelope (Kosevich and Kovalev, 1975; Manevitch et al., 1989):

Un4 �ÿ1�nUn:

Taking into account (6) and (7) we obtain a system of ODEs characterizing the traveling stationary
waves, in place of system (2):
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o2W 00 � n2
" 

1ÿ a��������������������������������
A�W�2 � A�V�2

q !
A�W� ÿ

 
1ÿ a�������������������������������

B�W�2 � B�V�2
q !

B�W�
#
� P�W� � 0

o2V 00 � n2
" 

1ÿ a��������������������������������
A�W�2 � A�V�2

q !
A�V� ÿ

 
1ÿ a�������������������������������

B�W�2 � B�V�2
q !

B�V�
#
� 0 �8�

where n 2=g/m; here the prime means a derivation by F.
One introduces a small parameter m=k 2, also let y=a 2.
One expands the components of system (8) in the Taylor series in the vicinity of m=0 and retains the

leading terms. Note that

V 0 � dV=dF � d

dF
�an� U�F�� � U 0 � d�an�

d�ankÿ ot� �
1

k
� U 0:

Finally, making a transformation,

U�F�4kdU�F�, W�F�4EW�F� �9�
(amplitudes e, d etc. E, d > 0) in order that j U 0�F� jE1, jW 0�F� jE1, one obtains after some
transformations of the following system:

�o2 ÿ yn2m2�dU 0 � E2W 0 2=2��EW 00 ÿ yn2m2�E2W 0W 00 � dU 00 �EW 0 �O�m3� � 0

�o2 ÿ yn2m2�dU 0 � E2W 0 2=2��dU 00 ÿ yn2�m�E2W 0W 00 � dU 00 � � m2dU 0�E2W 0W 00 � 2dU 00 �

� y
12

m2�dU 0000 � E2W 0W 0000 � ÿ 3m2�E2W 0W 00 � dU 00 ��dU 0 � E2W 0 2=2�� �O�m3� � 0:

�10�

The impact function is not presented in (10) and will be used later. In new variables the impact happens
if vWv=L/E.

One obtains from the ®rst equation of (10) the estimate: o 2=O(m 2).
Let o 2=o 2

0+0(m 3).
From the second equation of (10), retaining the leading terms of O(m ), we have the following

equation:

dU 00 � E2W 0W 00 � 0: �11�
Integrating by F, one has dU '+E 2W '2/2=D (D being arbitrary constant).

Write out the ®rst equation of (10) taking into account (11) and the terms of O(m 2) in the second
equation in (10):

�o2
0 ÿ yn2D�EW 00 � 0

�o2
0 ÿ yn2D�E2W 0W 00 ÿ yn2

�
dU 0E2W 0W 00 ÿ y

12
�dU 0000 � E2W 0W 0000 �

�
� 0: �12�

In the case W0=0 one has, with regard to impacts (in a position vWv=L/E ), a non-smooth `saw-tooth'
solution (Pilipchuk, 1996). Consider here other solutions. Let o 2

0ÿyn 2D=0. It is clear that Dr0.
The second equation of (12) gives us the following:
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W 000 � b1W 0 ÿ b3W
0 3 � 0 �13�

where b1=4D/y, b3=2E 2/y.
The analysis of solitary waves in elastic chains will be carried out in Section 4; the impact function

will be considered in Section 5.

3. Non-linear transverse waves in rods

Consider the in®nite elastic rod being between two ideal and absolutely ®xed catches (barriers) with
gaps equal to L.

The impact process is not considered in this section and will be considered later.
One describes the plane rod dynamics using equations of coupled longitudinal-bending (transverse)

vibrations of rods, obtained by Potapov (1985). Note that the following analysis will be made for non-
linear rods within the framework of the Kirchho� hypothesis (Kauderer, 1958).

The equations may be deduced from expressions of potential and kinetic energies containing
quadratic, cubic terms and principal terms of the fourth degree.

Corresponding equations of motion are expressed as (Potapov, 1985):

UttÿC 2
S�1� 6a1=E UX�UXX ÿ n2R2

r
@2

@X 2
�Utt ÿ C 2

tUXX� � @

@X
��C 2

S=2� C 2
M�W2

X

� R2
YW2

Xt � R2
Ya2=r0 W2

XX� ÿ R2
Y

@2

@X @ t
�WXWXt� � @2

@X 2
��C 2

S � 4C 2
t�R2

YWXWXX�;

Wtt � �C 2
SR

2
Y � n2C 2

tR
2
Z�WXXXX � n2I2=F

@4

@X 4
�Wtt ÿ C 2

tWXX� ÿ R2
Y�1ÿ n�WXXtt

� @

@X

�
R2

YUXtWXt � �C 2
S � 2C 2

M�UXWX � �C 2
S � 4C 2

t�R2
YUXXWXX � 1

2
C 2

SW3
X

�
� R2

Y

@2

@X 2
��C 2

S � 4C 2
t�UXXWX � 2a2=r0UXWXX�y ÿ R2

Y

@2

@X @t
�2UXWXt �WXUXt�: �14�

Here: U(X, t ) characterizes a longitudinal displacement; W(X, t ) characterizes a transverse displacement
of a middle curve of the rod; the coe�cients a1 � �E=2� � 3

2l� � 16 ÿ n�n1 � �1ÿ 2n�n2 � 4
3n3 and a2 �

�E=2� � 1
2n1 � 3n2 � 4n3 determine geometrical and physical non-linearities; CS �

�����������
E=r0

p
is the velocity

of longitudinal waves propagation in the rod; Ct �
������������
M=ro

p
is the velocity of translation waves

propagation in the rod; CM �
����������
l=r0

p
; r0 is the density per unit length; E is the elasticity modulus of the

material; n is Poisson's coe�cient; l and M are LameÂ constants of the second-order; n1, n2, n3 are one's
of the third-order; Ir=ffF (Y 2+Z 2)dF is the polar moment of inertia; IY=ffFY 2 dF, IZ=ffFZ 2 dF
are the axial moments of inertia; I1=ffFZ 4 dF, I2=ffFZ 2(Y 2+Z 2/2)dF are the geometrical moments
of inertia of the fourth-order; Rr �

������������
Ir=F

p
is the polar radius of inertia; and RY, Z �

�����������������
IY, Z=F

p
are the

axial radii of inertia.
Consider, just as previously, traveling stationary waves of the single argument (`phase'): U=U(F ),

W=W(F ), where F=kxÿot.
One transforms to dimensionless variables:

U�F�4E1U�F�, W�F�4E2W�F� �15�
in order that initial values of the new variables
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j U 0�0� j� 1, jW 0�0� j� 1,

where ( ')=d/dF, E1, E2> 0.
We are restricted to a long wavelength approximation corresponding to the Kirchho� hypothesis.

Orders of the principal parameters of wave processes are as follows:

k2 � m� 1, o � O�k2�

E1 � kd, d � O�1�; E2 � E, E � O�1�: �16�

Eqs. (14) can be assumed to be of the form of ODEs:

kdo2U 00 ÿ C 2
S

�
1� 6

E
a21dkU 0

�
dk3U 00 ÿ n2R2

rdk
3�o2 ÿ C 2

tk
2�U�4� � kE2��C 2

S=2� C 2
M�k2W 0 2

� R2
Yk

2o2W 00 2 � R2
Ya2=r0k

4W 00 2� 0 ÿ R2
Yo

2E2k3�W 0W 00 � 00 � �C 2
S � 4C 2

t�R2
Yk

5E2�W 0W 00 � 00;
Eo2W 00 � �C 2

SR
2
Y � n2C 2

tR
2
Z�Ek4W�4� � n2I2k

4E=F�o2 ÿ C 2
tk

2�W�6� ÿ R2
Y�1ÿ n�Eo2k2W�4�

� k

�
R2

YEdo
2k3U 00W 00 � �C 2

S � 2C 2
M�Edk3U 0W 0 � �C 2

S � 4C 2
t�R2

YEdk
5U 00W 00 � 1

2
C 2

SE
3k3W 0 3

� 0
ÿ R2

Yk
4o2Ed�2U 0W 00 �W 0U 00 � 00 � R2

YEdk
5��C 2

S � 4C 2
t�U 00W 0 � 2a2=r0U 0W 00 � 00: �17�

Then one can reduce the order of the system integrating this. Utilize the expansion

o2 � m2o2
0 � m3o2

1 �O�m4�: �18�

Preserving the leading terms by the small parameter m, one obtains from the ®rst equation of (19) after
integration, the following:

dU 0 � ÿE
2

2
�1� 2�CM=CS�2�W 0 2 �D1, �19�

D1 is an arbitrary constant.
By substituting the expression (19) to the second equation of (17) after integration, one has

W 000 � p1W 0 � p3W
0 3 � D2 �20�

where

p1 � �o2
0 ÿ �C 2

S � 2C 2
M�D1�=�C 2

SR
2
Y � n2C 2

tR
2
Z�

p3 � ÿ 1
2C

2
SE

2�1ÿ �1� 2�CM=CS�2�2�=�C 2
SR

2
Y � n2C 2

tR
2
Z� �21�

D2 is an arbitrary constant.
In the case of the solitary transversal waves D2=0.
Note that the solitary transversal waves exist if p1< 0, that is (C 2

S+2C 2
M)D1>o 2

0.
The last equation of (20) is similar to Eq. (13). But the phase places of Eqs. (13) and (20) are

di�erent. The point is that a shear is absent in the chain system under consideration.
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4. Solitary waves in rods and chains

Eq. (2) in the case D2=0 [or Eq. (13)] is well studied, and here it will be selected conditions of the
solitary waves existence. Four principal situations are possible:

�a� p1 < 0, p3 < 0; �b� p1 > 0, p3 > 0; �c� p1 < 0, p3 > 0; �d � p1 > 0, p3 < 0:

�22�
The corresponding phase portraits are presented in Fig. 2. Every diagram has its own scale by axes.
Curves on the places conform to the ®rst integral of Eqs. (20) or (13):

W 00 2 � p1W
0 2 � p3W

0 4=2 � H �23�
(H is an arbitrary constant, this is an energy of the system).

Fig. 2. Phase portraits (W ', W0) of Eq. (20) [or (13)] Cases (a)±(d). Every diagram has its own scale by axes. Curves on the places

conform to the ®rst integral (23) of Eq. (20) or (13). Case (a): the solitary waves are missing; Case (b): the solitary waves are miss-

ing; Case (c): the separatrix (H= 0) corresponds to the solitary traveling wave; Case (d): the separatrix (H=q, q=b 2
1/(2b3)) corre-

sponds to the solitary traveling wave.

Yu V. Mikhlin, A.M. Volok / International Journal of Solids and Structures 37 (2000) 3403±34203410



Further, let b1=vp1v, b3=vp3v.
Case (a) The separatrix (H=0) divides unperiodical solutions, and the solitary waves are missing.
Case (b) All solutions are periodic, and the separatrix are missing.
Case (c) The separatrix (H=0) corresponds to the solitary traveling wave.
Case (d) The separatrix (H=q, where q=b 2

1/(2b3)) con®nes a region of a periodical solution enclosing
the equilibrium position (0, 0). The separatrix corresponds to the solitary traveling wave.

4.1. Consider Case (c) appropriate to the case of the solitary waves in a non-linear rod system

It is possible to write out the well-known solution corresponding to the separatrix:

W 0 �2
1���

q
p

ch C
, �24�

where q=b3/(2b1), C � A2
�����
b1
p

F, and the arbitrary parameter A (this is equal to the initial phase by a
traveling variable) may be eliminated without loss of generality by imposing the initial condition.

Integrating the relation (24) one obtains

W � B2
���������
2=b3

p
arctg sh�

�����
b1

p
F�, �25�

B being an arbitrary constant. In addition, one writes:

W 00 �2

 
ÿ

��������������
2b21=b3

q
th� �����

b1
p

F�
ch� �����

b1
p

F�

!
:

The solution W(F ) just W '(F ) and W0(F ) are bounded functions.
Taking advantage of Eq. (19) one has the function U(F ):

dU 0 � Dÿ E2
�
1

2
� �CM=CS�2

�
W 0 2

U � C�DF=dÿ E2

d

�����
b1

p
=b3

�
1

2
� �CM=CS�2

�
th�

�����
b1

p
F�: �26�

Here C is an arbitrary constant.
The constant D has the meaning of the preliminary deformation of the rod. The function U(F ) is

unbounded in this case. The constant D is not equal to zero because in the opposite case (D=0) one
has o 2

0< 0.

4.2. Consider Case (d) appropriate to the non-linear chain system

It is possible to write out the well-known solution corresponding to the separatrix:

W 0 �2
�����������
b1=b3

p
th�

���������
b1=2

p
F� �27�

(the initial phase A may be eliminated without loss of generality by imposing the initial condition); one
obtains, integrating (27):

W � B2
���������
2=b3

p
ln ch�

���������
b1=2

p
F�
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also

W 00 �2
�����������������
b21=�2b3�

q
1

ch2� ���������
b1=2

p
F� �28�

where B is an arbitrary constant.
The transformation to new variables (9) was introduced provided that vU '(F )v R 1, vW '(F )v R 1. One

obtains from (27) that

jW 0�F� jR
�����������
b1=b3

p
, hence b1 � b3 or 4D=y � 2E2=y that is D � E2=2: �29�

One has from here that

o2
0 � yn2E2=2: �30�

This is a relation between the wave frequency o and the wave amplitude E.
Using Eq. (20) one has:

dU 0 � E2=2�1ÿW 0 2� � E2

ch2� ���������
b1=2

p
F� �31�

and

U � C� E2

2d

��������
2=b

p
th�

���������
b1=2

p
F�,

C is an arbitrary constant.
The condition vU '(F )v R 1 gives us the relation:

d � E2

2
: �32�

Formula (32) has the following meaning: maximal longitudinal and transverse deformations are
connected.

One also obtains

b1=2 � 4D=y � �E=a�2: �33�
Let V = 1/a. We now extract the expressions of the solutions which describe the solitary waves in a
non-linear chain system:

W � B2
1

VE
ln ch�VEF�

W 0 � th�VEF�

W 00 � 2VE
ch2�VEF� �34�

Plots of the functions (34) are presented in Fig. 3. The diagrams have di�erent scales by vertical axis.
The argument FE[ÿ4, 4].
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U � C� 1

VE
th�VEF�

U 0 � 1

ch2�VEF� : �35�

As a consequence one has the equality: U '=1ÿW '2.
Here the constant B de®nes some initial value of the transverse displacement, the constant C de®nes

some initial value of the longitudinal displacement.
The expressions (34) and (35) represent a one-parameter family of solutions. The amplitude E is a free

parameter.

5. Vibro-impact motions in chains

The solution W(F ) in a form of the solitary wave (34) is unbounded at in®nity. In the presence of
barriers the impacts take place necessarily.

Construct the phase place (W, W ') of the obtained solution. At the time of impact a sign of the
velocity changes and the following principal cases are possible:

1. The impacts are possible and there is a `jumping' to the same phase trajectory.
2. The impacts are possible and there is a `jumping' to another phase trajectory.
3. The impacts are impossible, that is the solution does not exist in the presence of barriers.

In the new coordinates [see the transformation (9)] the distance between the barriers equal to 2L/E.
Using the expression (34), Case (d), one obtains the relationship W '(W):

W 0 �2sign�F�
������������������������������
1ÿ e22VE�BÿW�
p

, �36�
where V 2=b1/(2E

2).
Branch `+' (branch a ) of the solution corresponds to W> B, and one `ÿ' (branch b ) corresponds to

W< B.

Fig. 3. Plots of the solitary waves (34), Case (d). Diagrams have di�erent scales by vertical axis. The argument FE[ÿ4, 4].
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The phase place (W, W ') is depicted in Fig. 4. The solutions increase or decrease inde®nitely. In Fig. 4
the constant B=ÿ1; ÿ1<W<4 (branch a ), ÿ4<W<ÿ1 (branch b ).

If barriers exist, three variants are possible:

1. ÿL/E< B< L/E.
2. B<ÿL/E or B> L/E.
3. B=2L/E.

5.1. Consider the variant 1

The corresponding phase portrait is presented in Fig. 5. Here B=ÿ1, L/E=1.7, the range of values of
the variable W is the same as in Fig. 4.

There are two separated modes of vibrations, each of them strikes its own barrier. It reaches a
`jumping' to the same vibration mode (Fig. 5).

Evaluate the period of the vibro-impact modes. One uses the representation (34):

W � B� 1

VE
ln ch�VEF�:

The impact takes place if W=L/E (branch a ). One has from here

L=E � B� 1

VE
ln ch�VEF�:

F � 1

VE
ln�e�LÿBE�V2

��������������������������
e2�LÿBE�V ÿ 1
p

�: �37�

In Fig. 5 a point A1 corresponds to the sign `ÿ' in relation (37) (here F=F1), a point A2 corresponds to
the sign `+' (here F=F2), moreover F1=ÿF2.

One assumes that the impact is stereomechanical and takes place instantly. The stereomechanical
impact theory was established by Newton (Goldsmith, 1960; Nagaev, 1985).

Fig. 4. The phase place (W, W ') of the solitary waves. Curves correspond to the relation (35). The constant B=ÿ1; ÿ1 <W< 4

(branch a ), ÿ4<W<ÿ1 (branch b ).
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A period of the vibro-impact motion is a time of the passage from A1 to A2 along the phase
trajectory. We consider a period of the vibro-impact motion by branch a,

T�a� � 1

VE
ln

e�LÿBE�V �
��������������������������
e2�LÿBE�V ÿ 1
p

e�LÿBE�V ÿ
��������������������������
e2�LÿBE�V ÿ 1
p or T�a� � 2

VE
ln�e�LÿBE�V �

��������������������������
e2�LÿBE�V ÿ 1
p

�: �38�

One obtains from (38)

T
�a�
min � 0 if B � L=E;

T�a�max �
2

VE
ln�e2LV �

�����������������
e4LV ÿ 1
p

� if B � ÿL=E:

Consider the branch b. One has:

F � 1

VE
ln�e�L�BE�V2

��������������������������
e2�L�BE�V ÿ 1
p

�: �39�

A period of the motion by branch b is a time of the passage from B2 to B1:

T�b� � 2

VE
ln�e�L�BE�V �

��������������������������
e2�L�BE�V ÿ 1
p

� and T
�b�
min � 0 if B � ÿL=E,

T�b�max �
2

VE
ln�e2LV �

�����������������
e4LV ÿ 1
p

� if B � L=E: �40�

Consequently, the minimal and maximal times of the motion between barriers are not dependent on the
vibration modes, the times are the functions of the system parameters only.

Fig. 5. Phase portrait of the solution (34) with impact, the variant 1. The constant B=ÿ1, L/E=1.7, ÿ1 <W< 4 (branch a ), ÿ4
<W<ÿ1 (branch b ). Point A1 corresponds to the sign `ÿ' in relation (37), here F=F1; point A2 corresponds to the sign `+' in

(37), here F=F2; F1=ÿF2.
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5.2. Consider the variant 2

The corresponding phase portrait is presented in Fig. 6. Here B=ÿ2, L/E=1.7, ÿ2 < W < 6. It is
only presented in branch a.

T1 is a time of the motion from A1 to B1; T2 is the same from B2 to A2. Let B=ÿL/EÿG(G>0).
One has W=L/E if

W � L=E if F � 1

VE
ln�e�2L�GE�V2

����������������������������
e2�2L�GE�V ÿ 1
p

�

and

W � ÿL=E if F � 1

VE
ln�eGEV2

�������������������
e2GEV ÿ 1
p

�: �41�

One obtains from (41)

T1 � 1

VE
ln

1ÿ
����������������������
1ÿ eÿ2GEV
p

e2LV ÿ
����������������������������
e4LV ÿ eÿ2GEV
p ;

T2 � 1

VE
ln

e2LV �
����������������������������
e4LV ÿ eÿ2GEV
p

1�
����������������������
1ÿ eÿ2GEV
p :

It is possible to make sure of T1=T2. Consequently,

T�a� � T1 � T2 � 2

VE
ln

e2LV �
����������������������������
e4LV ÿ eÿ2GEV
p

1�
����������������������
1ÿ eÿ2GEV
p

and

T�a�max �
2

VE
ln�e2LV �

�����������������
e4LV ÿ 1
p

� � Tmax if G � 0: �42�

Fig. 6. Phase portrait of the solution (34) with impact, the variant 2. The constant B=ÿ2, L/E=1.7, ÿ2 <W< 6. It is only pre-

sented the branch a. Point A1 corresponds to the sign `ÿ' in relation (37), here F=F1; point A2 corresponds to the sign `+' in

(37), here F=F2; F1=ÿF2.
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By analogy with the results one obtains (B=L/E+G; G>0)

T�b� � 2

VE
ln

e2LV �
����������������������������
e4LV ÿ eÿ2GEV
p

1�
����������������������
1ÿ eÿ2GEV
p

T�b�max �
2

VE
ln�e2LV �

�����������������
e4LV ÿ 1
p

� � Tmax if G � 0: �43�

It is possible to make sure that T(a )=T(b ) (if the constants G are coinciding).

5.3. Consider the variant 3

The corresponding situation is depicted in Fig. 7. Here B=ÿ1, L/E=1, ÿ1 < W < 4 (branch a ),
ÿ4<W<ÿ1 (branch b ).

The variant can be represented as a special case of the variant 1.
In this case: T(a )=Tmax, T

(b )=Tmin=0.
Simultaneously the variant 3 can be represented as a special case of the variant 2.
In this case branch b is absent and T(b )=0, T(a )=Tmax.

6. Construction of periodical vibro-impact solutions

As is obvious from the preceding, there are jumps of the function W '(F ) at the point of impact. The
function W0(F ) is singular. Rejected inertia terms containing U0 are not small. Therefore, the examined
vibro-impact approximation circumscribes su�ciently well only for the transverse displacements W(F ).

Consider, in the ®rst place, the variant 1 (Section 5.1). There are impacts to single barriers in this
case. The phase values corresponding to impact times are the next: F=F1 and F=F2. In the chosen
coordinate system F1=ÿF2 and T=F1ÿF2 is a time of the motion between impacts [see (38); F1 < 0,
F2> 0].

Fig. 7. Phase portrait of the solution (34) with impact, the variant 3. The constant B=ÿ1, L/E=1, ÿ1<W<4 (branch a ), ÿ4<
W < ÿ1 (branch b ). Point A1 corresponds to the sign `ÿ' in relation (37), here F=F1; point A2 corresponds to the sign `+' in

(37), here F=F2; F1=ÿF2.
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The vibro-impact discontinuous solution under consideration can be expressed as a continuous
periodical function. Namely, a special non-smooth transformation can be introduced:

x�F� � T=2� fF=T gT �44�
where curly brackets mean a selecting of the fractional component. The transformation (44) is like the
non-smooth saw-tooth time transformation by Pilipchuk (1996) for essentially non-linear systems close
to the vibro-impact ones and to the non-smooth transformation by Zhuravlev (1977).

One has ÿT=2Ex�F�ET=2 if ÿ1<F<+1. Impact points are the following:

F � T=2� Tk; k � 0, 21, 22, . . . :

A solution of the problem is a function W(x(F )) de®ned on ÿ1< F < +1. The functions W(x(F ))
and W '(x(F )) are presented in Fig. 8 on the interval [ÿT/2, 3 T/2].

Consider present the variant 2 (Section 5.2). In this case there are impacts to both barriers.
The impacts in the vicinity of the origin takes place in the following points (Fig. 6):
A1: here F1< 0, coordinates of the barriers: F=L/E (branch a ), and F=ÿL/E (branch b );
B1: here F2< 0, coordinates of the barriers: F=ÿL/E (branch a ), and F=L/E (branch b );
B2: here F3> 0, coordinates of the barriers: F=ÿL/E (branch a ), and F=L/E (branch b );
A2: here F4> 0, coordinates of the barriers: F=L/E (branch a ), and F=ÿL/E (branch b ).
In the chosen coordinate system F1=ÿF4, F2=ÿF3; T=(F2ÿF1)+(F4ÿF3) [see (41)±(43)].
The transformation

x�F� �
�
F1 � fC=�T=2�gT=2 if C3T=2
F3 � f�Cÿ �T=2��=�T=2�gT=2 if CrT=2

�45�

where C={F/T }T, gives us the periodical representation of the vibro-impact motion.
Impact points are the following:

F � F1 � �T=2�2k; k � 0, 2122, . . .

and

Fig. 8. Diagram of the functions W(x(F )) and W '(x(F )) on the interval [ÿT/2, 3 T/2] in the case of impacts to a single barrier.

Here the variable x(F ) is given by formula (44).
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F � F1 � �T=2��2k� 1�; k � 0, 21, 22, . . . , �F2 � F1 � T=2�:
A solution of the problem is a function W(x(F )) de®ned on ÿ1< F < +1. The functions W(x(F ))
and W '(x(F )) are presented in Fig. 9 on the interval [F1, F1+4 T ] (here F1< 0).

7. Conclusions

We analyzed transversal traveling waves in one-dimensional essentially non-linear in®nite elastic
systems: chains and beams. In the framework of a long wavelength approximation the result was that
the non-linear systems with regard to impact (only the case of absolutely elastic impact is regarded)
sometimes assume the solitary traveling waves. An analysis of the phase planes of a long wavelength
traveling wave gives us conditions of the solitary waves existence. A special non-smooth transformation
which gives us a periodical representation of the vibro-impact motion was also introduced. The
presented analysis can be extended to other non-linear elastic systems including two-dimensional, such
as plates or membranes.
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