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Abstract: In this paper we consider the possibility of elastic oscillation absorption using the snap-through
truss. This truss was introduced by Mises in 1923. A single-degree-of-freedom linear oscillator is chosen as
the most simple model of a continuous elastic system. The nonlinear absorber with three equilibrium positions
(the snap-through truss) is attached to this oscillator. The dynamics of this system is studied by the nonlinear
normal vibration mode approach. The construction and stability analysis of the localized and non-localized
nonlinear normal modes are developed. If the localized mode is realized, the system energy is concentrated
in the nonlinear absorber. This situation is the most appropriate to absorb vibrations.
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1. INTRODUCTION AND PROBLEM FORMULATION

Numerous scientific publications contain a description and analysis of different devices for
the vibration absorption of machines and mechanisms. Here, only some of these publications
are selected, those which are related to passive absorbers. In particular, Haxton and Barr
(1972) considered the absorber in the form of a beam, which is attached to the system mass—
spring. Shaw and Wiggins (1988) considered a pendulum-type centrifugal vibration absorber
of torsion oscillations. They used the Melnikov function to study chaotic motions. Shaw et
al. (1989) showed analytically that the unstable oscillations appeared, if forced frequency
was close to the half-sum of two natural frequencies. In this case, the steady motions
were almost periodic. Natsiavas (1992) proposed the use of the oscillator with a nonlinear
spring to absorb forced oscillations of the Duffing system. Natsiavas (1993) used the mass—
spring nonlinear system to reduce vibrations of the self-excited system. He studied the
dynamics using perturbation methods. The general theory of linear and nonlinear absorbers
is presented in Frolov (1995). Lee and Shaw (1995) considered the absorption of torsion
vibrations of a four-stroke, four-cylinder engine by means of the pendulum-type centrifugal
absorber. Haddow and Shaw (2001) studied experimentally the rotating machinery with the
centrifugal pendulum absorber. Note that such absorbers are used in the engines of aircrafts
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Figure 1. The model under consideration.

and automobiles. Vakakis (2001) considered a semi-infinite linear chain with an essentially
nonlinear spring, which was attached to the chain to absorb the energy of oscillations.

Impact systems can be used to absorb oscillations (Karyeaclis and Caughey, 1989a,
1989b). Later Aoki and Watanabe (1994) offered the impact absorber, which contained small
mass hitting on the stop. The inverted pendulum with motion limiting stops was used as a
vibration absorber by Shaw and Shaw (1989).

Note that the snap-through truss was used in vibration insulation systems with quasi-zero
stiffness (Alabuchev et al., 1986). However, this is another application of the snap-through
truss in comparison with the absorber considered here.

In this paper, we suggest using a snap-through truss for longitudinal oscillation absorption
of an elastic solid. In this case, part of the elastic oscillation energy is transferred to the truss,
which jumps from one equilibrium position to another. An elastic system is approximated
by the single-degree-of-freedom (1-DOF) mass—spring model to study the truss capacity to
absorb oscillations. Free oscillations of 2-DOF systems are studied in this paper using the
method of the nonlinear normal modes (NNMs) of vibrations (Vakakis et al., 1996; Manevitch
etal., 1989). Note that, if oscillations with large amplitudes are analyzed, this NNM approach
is particularly effective. In the case of the appropriate mode for an absorption, the main elastic
system and absorber have small and significant amplitudes, respectively. We stress that this
motion corresponds to the localized NNM (Vakakis et al., 1996). By assumption, the truss is
shallow and its mass and stiffness are significantly smaller then the corresponding parameters
of the main elastic system. Such a choice of parameters is determined by the real absorber
design conditions.

2. EQUATIONS OF MOTIONS

Figure 1 shows the system under consideration. In this paper we investigate the principle
capacity of the small mass snap-through truss to absorb vibrations. Therefore, the 1-DOF
main elastic system is considered to simplify the analysis.
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This problem has engineering applications. For example, the considered model
corresponds to the problem of beam longitudinal vibration absorption. In this paper we show
that large amplitude vibrations of the 1-DOF snap-through truss are able to absorb the energy
of the linear elastic system vibrations. We stress that if the problem of absorption is solved,
the small damping only improves this solution.

The equations of motions are
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where (U, W) are the generalized coordinates, L is the length of the spring, ¢ is the angle,
which is defined the equilibrium position, x is the spring stiffness of the truss, and x; is the
stiffness of the main elastic system. The system (1) has three equilibrium positions: one

L -1
saddle, (U, W) = (K(Lf); 0) and two centers (U, W) = (0; £Lsing).
K1 K

. . . U w . . . M
The dimensionless variables u = Z; w = T and dimensionless time: ¢t = 4/ —7 are
K1

introduced. Then the system (1) takes the following form:

w2 —1/2
u—cos<p+{l+m} =0;

—1/2

Uu+u-+y

)

U+ yw [2— {(cos<p—u)2 —|—w2} — {cos?p + w?}~ 1/2} =0;

y (1 —x)

1+y
place, then the stable localized vibration mode ex1sts and u#; << w. With the assumption of

Section 1, the mass and stiffness of the truss are significantly smaller than the corresponding
parameters of the elastic system. Therefore, the following relations are introduced: u =
gu;y = €y;€& << 1. Retaining linear, quadratic and cubic terms by u; and w we can
rewrite the system (2) as

The new variable is introduced: u; = u + . If the oscillation absorption takes

. - & o & .
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3. PERIODIC MOTION ANALYSIS
3.1. Periodic Motions with Small Amplitudes

Let us consider the oscillations close to the stable equilibrium of the snap-through truss:
w =sin¢g; u = 0. We use the following change of variables: w — sinp = ewy; u; = €us.
Substituting the latter formulae into the system (3) and (4) and taking into account the
relations (5), we can obtain after some transformations the following system

- - [ -, 3
ity + (1 + eyc®)ug — eycswy + €2y [ﬁ Wity + a w? — 55%@:3} — 0
(6)

Wy + 7y (252w — scuy) + 8y{3s02w§ + ﬁ—;ug + 2a wluQ} =0;

~ ~ 3
where f =5 — 3s¢?; a = =s%c — g here s = sing; ¢ = cosg.
For ¢ = 0 the linear system (6) permits two NNM modes, which are changed at € #0.
System (6) is rewritten to analyze such NNMs in the following form

ity + 11, =0; ewvvr + 115, =0; (7)

~ 2 R 2
1=+ 83;02)% +eys®w? — eyeswiug + Ezy{%wlug + a Wiy + scPwh — %ug} :

~

where [ ] is the system potential energy, and [, :[],, are derivatives with respect to u,

and w;. Following the NNM approach (Vakakis et al., 1996), trajectories of the modes in
system (7) configuration space are sought in the form: uy = us(w;). We use the following
equations to eliminate ¢ from equations (7):

d(e) _ . d(e) d*(e) _ .,d*(e) .. d(o)

= = . 8
& M aw ar T Mo M, ®
Using relations (8) and the system (7) energy integral
1:!2 _ wQ ~
5 teuo +1I=h ©)

we derive the following equation to obtain the trajectories:

2 (h - ﬁ) ~ N
u// _ w1 u/ _ / (10)

uf +eu e Uz

Note that 4 is the total system energy. Equation (10) has the singularity at the maximum

isoenergetic surface [[ = h. Therefore, equation (10) is supplemented by the boundary
conditions
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~
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which are the conditions of orthogonality of the NNMs to the maximum isoenergetic surface.

These conditions provide the NNM trajectories analytical continuation on surface [[ = 4.

3.1.1. Localized Periodic Motions uy = €ug (wy)

The small oscillations of system (7) are presented in the form u, = &y (wy), then the
equation (10) first approximation with respect to € has the form:

(h—ys*wi) uy — ys*wiity — (yeswy —ﬁg)% = 0; (11)
h = ¢h.
Let us present the equation (11) solutions as the power series:
iy = by + bywy + byw? + ... (12)

Using energy integral (9), oscillations amplitudes W™ are determined on surface [1="

[ h
W) =4[ —. (13)
ys

The first approximation with respect to € of the boundary conditions has the form:

= 0. (14)

wi==4 W*(max)

{))_S2W117112 + (V_CSW1 — 17!2) %}

Series (12) is substituted into equation (11) and we match respective powers of w;. Let us
restrict ourselves to powers w?, wy, w2. Then we obtain three linear algebraic equations with
respect to five unknowns by, ..., b,. Satisfying boundary conditions (14), two additional
linear algebraic equations are derived. The solution of the system of five algebraic equations
is _

ycs

b= ——;
T op2e?

b0:b2:b3:b4:0, (15)
where p? = 7.
I . .

As a result, the localized NNM has been derived: u, = ebyw + O (€?). Thus the
obtained trajectory in configuration space (w;,us) € R? is a straight line close to the y-
axis. The analytical solution accuracy is illustrated by the Runge—Kutta method calculations
of system (3) and (4) with the following parameters: ¢ = 0.15; 4 = y = ¢ = 0.01. The
initial conditions are chosen from the analytical results, i.e. #15(0) = w(0) = 0; w(0) =
w4, (0) = eby W™ Figure 2 shows the very good agreement between the
analytical solution and the numerical calculations, which are presented in the configuration
space.
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Figure 2. The localized NNM with small amplitudes. Comparison of the analytical and numerical solutions.

3.1.2. Non-Localized Periodic Motions us = gwy + ug(w1)
The second non-localized NNM of vibrations has the following form:
Ug — gws +€u3(W1). (16)

Equation (10) for motions (16) can be written in the form:

2
e2uy <§ - m) —p* [g(25* — csg) wi + & {g (Bw} — csus) + uswy (25° — csg) }]

1 .
B= 5ﬁg2+2ag+ 3sc?. (17)

Two approximations of the solutions with respect to € are obtained by matching the respective
powers of €. As a result, we derive two ordinary differential equations. Value g is obtained
from the first of these:

1
g= e (2s2 —p_Q) . (18)

The second equation is

2
2uly (é - %) —p° {g (Bw} — csuz) + uywy (25° — csg) }

+us + ycigw, — yesw; = 0. (19)
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The solutions of equation (19) can be presented in the form of the power series:

Us = Co + 1wy +CQW%+ (20)

Oscillation amplitude W™* is derived from the energy integral ] (Wl(max)> = h when
the kinetic energy is equal to zero. Then parameter W™*) is determined in the following
way:
max 2h
W) = pos (1)

Two boundary conditions on the surface [ (Wl(max)) = hare

{—p2 [g (BW:{ - CS”3) + uywy (232_ ng)] + us + yc’gwi— V_CSW1} 0. (22)

e

Substituting series (20) into equations (19) and (22), the linear algebraic equation system with
respect to the coefficients of series (20) is obtained. The solution of this algebraic system can
be written as

hB (1 ¢ p’gB
= - — —_— = N = 2 = = 0 23
B ) E (g S) BT M )

Thus the second NNM has been derived in the form (20).
System (3) and (4) is integrated numerically to check the analytical results with the system
parameters chosen in Section 3.1.1 and initial conditions corresponding to the NNM (20):

u(0) = k™™ 4 eu, (mea">) C wn(0) = W i (0) =y (0) = 0.

Figure 3 shows the numerical simulation results in the configuration space.

3.2. Localized Periodic Motions with Large Amplitudes

Here periodic motions of system (3) and (4) with large amplitudes are also studied by using
the NNM approach. Then system (3) and (4) can be written in the following form

il o,

i+ —==0; pww+ ; (24)
ouy ow
_ou? eyt ewluy,  eya’w?  eppiwt
[[=(l4ep)a_&m_8owm & +yﬁ ,
2 2p3 2p? 2 8

where [ [ is the system potential energy. Let us determine the system (24) periodic motions
in the form u; = u;(w). The equation of trajectories in the configuration space has the
following form:

2(h 10 1

W w)y———2 — — [, =T . (25)
1( ) u/12+ﬂ u Hw 1 Hu1
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Figure 3. The non-localized NNM with small amplitudes. Comparison of the analytical and numerical
solutions.

The solution of equation (25) is presented as
uy, = eity (w); i (w) = ag + aw + aw® + . .. (26)

where ag, ai, . . . are unknown coefficients. Series (26) is substituted into equation (25) and
matching of respective powers of w is carried out. Restricting ourselves to orders w°, w', w?,
three linear algebraic equations with respect to five variables ay, ..., a, are derived. Two

boundary conditions at the maximal equipotential surface [[ = / give us two additional

algebraic equations
1
{tmv-1m,}

where W, is an amplitude of the NNM. The equation for W, determination is obtained from
the energy integral when a kinetic energy 7' = 0. This equation is

: 27)

w=+W,

H|w::i:W* =h. (28)
The previous equation can be written in the form
h:%wf—%wf; h = eh. (29)

We derive two equations from boundary conditions (27). We add these equations to the
previously obtained three linear algebraic equations. Solving the system of five linear
algebraic equations with respect to aq, . . . , a4, we derive the outcome:
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4h

ap =az=0; ay=——ay;

7 - dva?) W2 B _ _ _ -1
o {(2_ M) (4702 — 2080 + i) +yﬂ2Wf}

12h
_oaw? _ _
X {zﬂ -0 (4ya2—2yﬁ2Wf+,u)}; (30)
&_L_Ma- aA—glAL_. i— 924
T o oan 2 YT ST

So, the NNM trajectory of the essentially nonlinear system is obtained in the form (26) and
(30).

The following values of the parameters are taken for the numerical calculations: ¢ =
y =& = 0.01; ¢ = 0.15. The next initial conditions correspond to the analytical solution
(26) and (30): u5(0) = euy (W.); w(0) = W,; 112(0) = w(0) = 0.

Figure 4(a) shows the NNM of vibrations, which is obtained according to formulae (26)
and (30). Figure 4(b) shows the corresponding numerical results.

As we can see from Figure 4, the snap-through truss has significant amplitudes of
oscillations and the main elastic system has small amplitudes. If such motions are stable,
this guarantees the vibration absorption. Thus, the stability analysis of the obtained solutions
can answer finally the question about the possible vibration absorption.

4. PERIODIC MOTION STABILITY

In this section we use a small curvature of the obtained NNMs to analyze their stability. The
rectilinear approximations of these trajectories are restricted to the analysis. Let us introduce
new variables (&, 7) in the following way. The -axis is directed along the rectilinear
approximation of the NNM trajectory and the #-axis has the orthogonal direction. Figure 5
shows these axes and the qualitative behavior of solutions close to some unstable NNM.
Orthogonal variation #(¢) defines the orbital stability of NNMs. Therefore, the problem is
reduced to the analysis of a single linear differential equation.

4.1. Stability of the Periodic Motions with Large Amplitudes

Let us consider the stability of periodic motions, which were determined in the Section 3.2. It
is possible to rewrite system (3) and (4) taking into account thatu; = O(¢) (see relations (26))
and introducing the following representation: w = wy + O(¢). Retaining the lowest-order
terms in € we have the following equations:

PR
Wo — p?awy + 5 wy = 0;
(1)
v )
_&wwy  &wo

.. 1 —
i+ (14+ey )u P 0
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Figure 4. Periodic motion with large amplitude: (a) analytical solution; (b) numerical simulation with initial
conditions, which correspond to the analytical results.
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Figure 5. Qualitative behavior of solutions close to some unstable NNM.

Note that the first equation of system (31) is u; -independent. Let us study small perturbations
5(¢) of periodic motions #;, determined by formula (26): u; = u; + 5. As a result, the
following differential equation is obtained from the second equation (31)

. _ &
7+ <1 +ey—p—§wg>n -0, (32)
where
W = \/5% 1+ vI+4Hen (pa7\4/1 Yz k> ; (33)

4H: ﬂ4W>:l _ ﬁ_QWQ

) 34

4ot a? 34
dppa 2 -1/2

2k* = (1 +ﬁ4 - 'B—2Wf) +1. (35)
o a

Note that formula (29) defines a value W,. The following notations are taken in relations
(32)+(35): k is a modulus of elliptic integral; cn() is an elliptic function; H is a total energy
of the oscillator which is determined by the first equation of system (31). Figure 6 shows the
phase plane trajectories of this oscillator. Trajectory L represents the vibration absorption,
since the snap-through truss has large oscillation amplitudes and the linear elastic system has
small amplitudes. Such motions of the snap-through truss are described by formula (33). We
derive from equation (35)

kK = ki —eky + O (%) ; (36)

y(A5—c Y)W =22 (1—c) W2 c*(1—c)

kl ==

Y

*

5 3/2
et (1— ) + Wi —4¢2 (1 - ¢) W2]
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Figure 6. Phase trajectories of the oscillator which is determined by the first equation of system (31).

2 (1—c¢)
\/404 (1—c)’ +Wt—4c2(1—c)W?

ki = 0.5+

Substituting the Fourier series expansion of ¢n?(#, ky) into equation (32), we can obtain the
next equation

N4 |Q2 —eh Z LOQS cos (Qst) | n =0; (37)
—1 (1—4q5)
_ 4x? T we (ko)]
h= (), = ——;qgo=exp |— :
") T Ky T { K (ko)

(22 - 1) ehie  en(2-D(1+2) [E(ko)

2 J—
% = R (ko)

21-9p2  (1_op 110 ‘”k[’}’

where K (ko) and E (ko) are the complete elliptic integrals of the first and the second kinds.
Equation (37) is analyzed by the multiple scales method (Nayfeh, 1973). The solution of
this equation is chosen in the form:

7’]:7’]0(T0,T1)—|—87]1(T0,T1)+...;TO:f;Tl:St; (38)
Of = wp + 0] + ...

Following the multiple scales method, after some transformations we derive the following
equations:

92 . . |
7 @m0 = 0 = A (Ty) exp (iwoTo) + A (1) exp (< T): (39)
0

o + win + w3 + 2 910 — hn i S cos (Q,st) = 0. (40)
TR ITod Ty —~ (1-q5’)
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Resonances of order s(s = 1,2,3...) are considered. The resonance conditions are
presented as

Qs = 2wq + €0y, (41)

where oy is the detuning parameter. Using a change of variables: 4 = gexp (iB); y =

0, Ty — 2§, we can write the next system of modulation equations

a'wy = aysin (0, Ty — 2f);
2 (42)
By = 21—y cos(0,T; — 26).
hsqp
4(1-q3)
0.50,T1),asin( f — 0.50,T1)] are

where y = Equations (42) with respect to variables (x,y) = [acos(f —

(43)

The solutions of equations (37) have the form:

Q. Q.
7 :xcos(Tst> —ysin( 2St) + 0(e). (44)

Now the stability analysis of the solutions of equation (37) is reduced to the system (43)
analysis, i.e. a trivial solution stability is investigated. The eigenvalues of system (43) are

X2 (o) CU% 2
Ry S A U I 45
12 3 (2 20)0) (45)

The following relation represents the boundary of the stable/unstable oscillations regions on
the plane of the system parameters:

2 9
Qs = 200 + & (ﬁ + l) 1 O(e?). (46)

(9] o

Using formulae (37) and (38), we can rewrite equations (46) to study the geometry of the
stability/instability regions on parametric plane (¢, W, ) as

2K (k 7
%:€/CQ(1_C)2+4C*2_(1_C)W*2+0(8) (47)

Since the shallow snap-through truss is considered, the next notations are introduced: 1—c =
£.c1; €, <= 1. Then, equation (47) has the following form
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2¢K (k w., 2
\/_;WS( o) _ o= (1 —g*%) +0(e)+0(e), (48)
where . )
k§=§+£*%+0(8i); (49)

*

K (k) =K (%) +eK' (%) \;;;1/2 +0 (). (50)

We can obtain from the equation (48):

232 1 2t 1 )
W, = P [K (ﬁ) +8*7*2E (ﬁﬂ +0(e2)+0(e). (51)

Figure 7 shows curves (OA;), (OAs), (OA3) on plane (¢, W.), which meet equation (51).
Note that the terms of order O(¢) are presented in formula (46). The boundaries of the
stable/unstable regions are shown qualitatively in Figure 7 in the form of curves (B;C1D;),
(B2C3Ds), (B3CsD3). Values ¢;s = 1,2,..., which are shown in Figure 7, are derived
from equations (46) and (51). These values are determined according to the formula:

-1

() 0] .

p27T2S2

¢ = [1+

Magnitudes ¢, have the following values: ¢; = 0.63; ¢, = 0.88;¢3 = 0.94 for the system
parameters chosen in Section 3. In this case, points A; (i = 1,2, 3) shown in Figure 7 have
the following coordinates: A;(1;1.18); A2(1;0.59); A3(1;0.39).

The following conclusions can be made from Figure 7. If ¢ is small, the unstable
oscillations regions have order O(¢). If the value of ¢ is increased, the width and number of
the unstable regions are decreased. We can choose values of ¢, such that the periodic motions
under consideration are always stable.

4.2. Stability of the Periodic Motions with Small Amplitudes

Here we study the stability of the non-localized normal mode, which is considered in Section
3.1.2. Let us introduce variables (&, 7) = (u2,/g; —ua2,/ g + w1). At configuration space
(11, w ) these variables coincide with the normal mode of linearized system (6). System (6)
with respect to the above-mentioned variables has the following form

E4+étefi(En) = O (53)
n+25°p n+efs (Em) = 0; (54)
where - _
fieon) = vl - 2
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AWmax B 1

Figure 7. Stable/unstable regions on plane (¢, W) for the NNM with large amplitudes. The boundaries
of the regions are shown qualitatively in the form of curves (B1C1D1), (B2C2D2), (BsC3sDs). The curves
(OA1), (OA2), (OA3) meet equation (51).

4

_ ., p?st—1 c
2 P <+ ?Sn +p? (Aéf2 + B&p + 3s027]2) :

f2(&n) = —yc m
1 ~ -
A = 3sc* + §ﬁg2 + 20g; B = 6sc® + 2ag.

We represent equation (53) solutions as
&= Chaxcos (1) + O (¢), (55)

where &, is the oscillations amplitude. Relation (55) is substituted into equation (54).
Small perturbations A#(¢) determining the motion stability are added to the periodic motion
7(¢). The variational equation to within the terms of order O(¢) can be written in the form:

Asj + (2s2p2 + 612 4 ep?BE ancos (t)> An = 0. (56)
g

The well-known asymptotic results on Mathieu’s equation (Bogolubov and Mitropolski,
1961) are used, and the boundary of the stable/unstable regions in the system parameters
space is obtained:

2v/2ps? — 8p°s® = Felmax- (57)

This boundary is shown in Figure 8, where s = sin ¢ is plotted on the x-axis. The periodic
oscillations are unstable in the shaded region and they are stable outside this region. The
point O with the coordinates O (sin¢,_, 0) is the cusp. Value ¢, is determined as
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Figure 8. The stability/instability regions on system parameter plane (¢, ., s) for the non-localized normal
mode.

. 1
= arcsi (| ——— .
b ( 2v/2p )

For the numerical parameters used in Section 3.1, value ¢, is the next: ¢, = 0.36 radian.
As follows from Figure 8 and formula (57), if amplitude &, is increased, the stable periodic
oscillations become unstable.

Now we study the stability of the periodic motions, which are determined in Section 3.1.1.
Taking into account the following estimations for generalized coordinates, w; = O(1);
u; = O(g), we can present the second equation of system (6) in the form:

wivy + 2ys*w; + 0 (g) = 0. (59)
The solution of equation (59) is

wy = WM cog (psx/§t> +0(e).

Then we consider the first equation of system (6):
.. — 5, ycs 2-( 7 SN
u+<1+8yc —b—>u—|—8y(ﬁwm+aw1)—0. (60)

1

Let us introduce small orthogonal variations Az() for the periodic motions. The equation
with respect to Ay can be written as

Aq+ {2p2s2 +epc? + %W cos (PS\@‘H An=0. (61
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This is the Mathieu equation, which is considered in various books (Bogolubov and
Mitropolski, 1961). As a result, the following conclusions are made. There are no terms
with resonance of order O(g?). However, terms with resonance of order O(e*) do arise.
These terms are negligible. Therefore, the considered periodic motions are always stable to
within order O(e*).

5. CONCLUSIONS

In this paper we suggest the use of the snap-through truss to absorb oscillations. The main
elastic system, of which oscillations are absorbed, is simulated by the linear 1-DOF oscillator.
The free nonlinear oscillations of the 2-DOF system are analyzed by using the NNM method.
The periodic motions stability is also considered.

On the basis of the above-expounded research, the following conclusion can be made.
The localized NNM is the favorable regime to absorb oscillations. When the snap-through
truss has significant amplitudes of oscillations, the main elastic system has small amplitudes.
Note that the localized NNM is stable over a wide range of system parameters.
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