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Abstract. This paper considers normal vibrations with curvilinear trajectories in a configuration space of systems
which are close to systems permitting rectilinear normal modes of vibration. Analysis of trajectories of normal
vibrations in the configuration space is used.
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1. Introduction
Lyapunov [1] examined nonlinear finite dimensional systems of the form
y=Ay+N(y), yeR", N:R'"—-R", Ne(C", r>1 Q)

with an analytical first integral (where A isan (n x n) constant matrix); he assumed that the
linearized system, y = AY’, possesses periodic solutions with natural frequencies which are
not integrally related. Lyapunov proved that (1) possesses a one-parameter family of periodic
solutions. To arrive at a solution, he used two approaches. One involved a power series of the
amplitude of a variable, the series having coefficients periodic in time; the other was based
on phasetrajectories of periodic solutions. What is shown hereis the possibility of generating
the sametier of periodic solutions of Lyapunov systems by examining their trajectoriesin the
configuration space. These solutions possess all the properties of hormal vibrations.

Nonlinear normal vibration modes (NNMs) are a generalization of the normal (principal)
vibrations of linear systems. In a normal mode a finite-dimensional system behaves like a
conservative one having a single degree of freedom. In this case all position coordinates can
be parametrized by any one of them as follows:

z; = pi(x) (x =21,1 =2,3,...,n), 2

p;(x) being analytical functions.

Kauderer [2] becameaforerunner in devel oping quantitative methodsfor analyzing NNMs.
Thefirst formulation and devel opment of the theory of NNMs can be attributed to Rosenberg
and his co-workers[3-5]. Rosenberg considered . degrees of freedom conservative oscillators
and defined NNMs as *vibrationsin unison’, i.e., synchronous periodic motions during which
all coordinates of the system vibrate equiperiodically, reaching their maximum and minimum
values at the same instant of time.

Rosenberg was the first to introduce a broad class of essentially nonlinear conservative
systemsallowing normal vibrations with rectilinear trajectoriesin a configuration space of the
form:

z; = kix; (1=2,3,...,n). 3
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2 Yu. V. Mikhlin

For example, ‘homogeneous systems’ whose potential is an even homogeneous function
of the variables belong to such a class. It is interesting to note that the number of modes
of normal vibrations in the nonlinear case can exceed the number of degrees of freedom of
the system. This remarkable property has no analogy in the linear (non-degenerate) case. In
general, one expects the trgjectories of normal vibrations of nonlinear systems to be curved
instead of straight lines.

For some particular cases curvilinear trajectories were defined by Rosenberg and Kuo [6]
and by Rand [8]. In the paper by Manevich and Mikhlin [8] the power series method was
proposed for the construction of above mentioned trajectories.

Different results and new ideas concerning NNMs of conservative systemswere performed
by Vito [9], Mikhlin [10], Vedenovaet al. [11], Vakakis [12], Vakakis and Rand [13], Shaw
and Pierre [14, 15], Nayfeh and Nayfeh [16], etc.

In [9] NNMs are approximated by harmonic functions. In [10] Padé approximations are
used for an analysisof the NNMswith large amplitudes. In[11] nonlinear modelocalizationis
studied in discrete nonlinear systemswith impact nonlinearities. In [12] asymptotic methodol-
ogy isused; for an oscillator with weak coupling stiffness in both localized and non-localized
modes are detected. In [13] the global dynamics of strongly nonlinear systems are analyzed
by means of Poincaré maps. In [14, 15] the authors reformulated the concept of NNMs for a
general class of nonlinear discrete oscillators without assuming the existence of an anaytic
first integral of motion. Their analysis is based on the computation of invariant manifolds
of motion on which the NNM oscillations take place. In [16] a computationally efficient
extension of the invariant manifold methodology (complex invariant manifold formulation) is
proposed.

Here, arigorous perturbation methodology for analyzing finite amplitude NNMs of broad
classes discrete nonlinear systemsis presented and the effect of internal resonancesis consid-
ered.

2. Normal Vibrationsin Lyapunov Systems

Let us now consider an . degrees of freedom conservative system of the form

(4)

s =——,1=12...,n

. . dz; o1l
midi 1o =0 <$i:d_tz’ 07 )

IT = II(z) being potential energy assumed to be a positively definite function and z =
(71,72,...,2,)"; power series expansion for II(z) begins with terms having a power of at
least 2. Without reducing the degree of generalization we assume that m; = 1, since this can
be always ensured by dilatation of coordinates.

The energy integral of the system (4) is given by

1.
ézx%+ﬂ(x17x27"'7xn):h7 (5)
k=1

where h isthefixed level of thetotal energy. Assumethat within the region of the configuration
space, bounded by a closed maximum equipotential surface II = h, the only equilibrium
positionisz; =0(: =1,2,...,n).
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Normal Vibrations of a General Class of Conservative Oscillators 3

In order to determine the trajectories of normal vibrations (2), the following relationships
can be used [4, 8]:

h—1I
P A ——
"1+ YRoa(@)

where primes represent differentiation with respect to z.

These are obtained either as Euler equationsfor the variational principlein the Jacobi form
[17] or by elimination of time from the equations of motion (4) taking into account the energy
integral (5). Equations (6) are nonlinear and non-autonomous, and have removable singular
points: they are not simpler in the linear case. Nevertheless, these relationships are suitable
for the determination of nearly rectilinear trgjectories of normal vibrations.

An analytical extension of the trajectories up to a maximum isoenergy surface Il = h is
possibleif the following conditions of orthogonality of atrajectory at IT = h are satisfied [4]:

zi [~ (X, 22(X), ..., 2,(X))] = =1z, (X, 22(X), ..., 25 (X)), (7)

+ 2} (-11,) = —11,, (1=2,3,...,n; X = Xy1), (6)

(X, z2(X),...,z,(X)) being the end points of the trajectory on IT = h, where all velocities
are equal to zero. If atragjectory z;(x) is defined, the law of motion with respect to time can
be found using the relation:

T+ Ha:(xaxZ(‘T")a s 7xn($)) =0.
This can be rewritten in the form
i+ V'(z) =0.

The function z(t) now istheinversion of the quadrature

1
t+¢—ﬁ!m'

Without loss of generality, the phase here is so selected that the initial velocity equals zero.
The amplitude and the energy arerelated by » = V (). Thisequation is solvable with respect
to the amplitudes X at a given energy h, provided the conditions of the closeness of all
equipotential surfaces (at various values of 4) holds and no equilibrium positions exist other
than z; = 0. This condition also assures that the function x(¢) is periodic [18].

Fromthe abovediscussionit isconcluded that normal vibrations constitute aone-parameter
(intheenergy h) family of periodic solutionswith smooth trajectoriesin aconfiguration space.
A second arbitrary parameter, i.e. the phase ¢, may also be considered, but this requires that
the condition z(0) = 0.

Let us select terms of the potential energy that are quadratic in «; and define a generating
linear system I = II, + N, where the expansion of N in terms of z; begins with at least
a power of 3. The characteristic equation of the generating linear system has but purely
imaginary roots of the form +iw; (j = 1,2,...,n), i = —1. A normal form of vibrations
corresponds to a pair of roots. Let us select one of these vibration forms by fixing the pair
tiw (w = w1).

A basic assumption made by Lyapunov in his construction of NNMs was that there are
no linearized normal modes with natural frequencies which are integrally related, i.e., which
satisfy relations of theform w; = pwg, p=1,2,3,...
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4 Yu. V. Mikhlin

Transforming the quadric I, to a sum of sguares (this transformation is equivalent to the
introduction of normal coordinatesin alinear system described previously), one obtains:

1= wzxz—i- szxz—i—N (x,z2,...,2y) (x = x1). (8)

It iswell known that such a transformation does not change the form of the kinetic energy

= (1/2) lx A generating of normal forms of vibrations in a linear system is now
determlned by equatlons zj =00 =23,...,n), z = X cos(wt + ¢). By selecting the
time origin so that £ = (0), one obtains ¢ = O Following Lyapunov, let us assume that all
variablesz; (j = 2,3,...,n) are of the order of magnitude ¢, where ¢ = 2(0), £(0) = 0. On
having introduced ¢ into the potential energy (8) by substituting z; — cz; it is seen that every
homogeneous constituent of I1 contains ¢ to a power equal to the degree of homogeneity asa
factor. Thus we can write:

22, v k
H:E wr +§:2w —i—ZcN (x,z2,...,2Tp), 9

where the functions N(* represent the O(||z*||) terms of the potential energy. In the new
coordinateswe have z(0) = X = 1. Later the symbol (k) will be indicated the same.

L et us now use equations (6) to find the normal oscillation trajectory of anonlinear system
which, onits linear limit, becomesrectilinear, z; = 0 (j = 2,3,...,n). The solutions of the
equations will be presented as

o0
xTj = Zcexﬂ. (10)
=1

Since we are dealing with trajectories in a configurational space, the variables x ;, should be
regarded as functions of z, rather than of time ¢.

Before proceeding to construct the solution it is worth noting that the singular points of
equations (6) are roots of the equation:

h=1(z,z2,...,2z,). (11)

Asthe order of approximation varies so does the estimate of the energy h, since the solution
zi(x), 1 = 2,...,n, becomes more accurate through the inclusion of higher order terms.
Suppose that the energy ho of the generating linear system does not coincide with the total
energy h of the nonlinear system. Let us assume

h = ?ho + by (12)

(ho hasan order of ¢? while nonlinear terms are of greater order than ¢). In particular, having
estimated the functions z;(z), i = 2,...,n, up to O(eP), for a given amplitude of vibration
z = X, therelation (11) leads to:

p p
4 4
:H<x,g C:Ulg,...,g c:vng>.
(=1 (=1

Thisrelationship enablesthefinding of theenergy 1(9); sincetheenergy of thelinear system
ho isknown, one obtains the estimate for the energy, hgl) to be used in the next approximation.
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Normal Vibrations of a General Class of Conservative Oscillators 5

Substituting the series (10) into (6) and collecting the lowest order termsin ¢, one obtains
the following equations:

227 (ho — % w2x2> — thw?s + Wiy + N:,(:Z_S) (z,0,...,0) =0, (13)
where
N (z,0,...,0) = sa® (i =2,3,...,n).

At this point the boundary conditions (7) are used. These determine the orthogonality of the
trajectory to the maximum equipotential surface. The amplitude values of x = X related to
the energy ho by

1 2
ho:—w2X2 (X]_z::i: i;)
2 ’ \/ w

Retaining the lowest order terms in ¢, one derives the following set of (n — i)O(c?)
boundary conditions:

— 2y (X)w) X + (X)) + NP(X,0,...,00=0 (i =2.3,...,n). (14)

The homogeneous equations corresponding to (13) are hypergeometric equations (with two
regular singular points) whose solutions have been thoroughly studied in the literature. A
genera solution of (13) exists in closed form. Alternatively, the analytical solution of (13)
can be represented in terms of the Taylor series about the origin of the configuration space,
which can then be analytically continued up to the maximum equipotential surface by satis-
fying boundary conditions (14). To perform this computation the approximations x;1(x) are
expressed as

o
Til = Z agjl-):vj. (15)
7=0

Substituting the seriesinto (13), the following binomial recurrent relationships for the coeffi-
cients al(,? result:

4hay + wlaly) =0,

1208 —ald + D =0

24hal(i) — ZwZaE%) — ZaZ%)wz + wizag) +a; =0,
40hal%> — 6w2al%) — Sal%)wz + wl-zal(é) =0,

20 +2)(j + Dhall),, = G — Deral) +ju?al) +wPal) =0

(h = hg in this approximation).
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6 Yu. V. Mikhlin
The radius of convergence of (15) is found by examining the infinite recurrent set of

eguations (16),

o

)

Q542

R = lim

J—00

Note here that, as shown in [5], any solution of z;(x) converging in a domain bounded by
asurface Il(z, x2,...,z,) = h, may be analytically continued up to this surface, provided
that the orthogonality conditions (7) hold, which in the first approximation are determined by
(14).

The recursive formulas (16) provide non-unique solutions for the coefficients of the series
(15). Uniqueness of the solution is obtained by imposing the (n — 1) boundary conditions
(14), i.e., by continuing the Taylor series expansionsup to the maximum equipotential surface.
Using (16), one expresses the arbitrary coefficient agj) in terms of coefficients aEé’ and aﬁ’.
These last coefficients are computed by employing relations (14). On substituting (15) into
(14) (& = = +X, where X? = 2h/w?), one obtains the additional algebraic relations (at
z = +X, where X2 = 2h/w?):

o0
> aij(£X)7 7 + X2 =0. (17)

i=1

3 jal (£Xx)7
j=1

2 2
Fw + wj;

Introducing at this point the quantities

0 _ 32— A _ Wi

K' Y T ) — )
TG+ +1) Cw
the solutions to the recursive relations (16) are expressed as:

i i i i i) (i i [ w? ‘ w2\ o
“(212 = Kék)—2K§k>—4"'Kﬁ(f) [Ké)Ké)'“z(O) (E) “\2n 122 |’

% % % % % % Wz ’
s = KRG kYR () )

Expressions (16) relate an arbitrary coefficient al(-;-) to the leading coefficients al%) and az(?.

These last coefficients are determined by substituting (18) into the boundary conditions (17),

resulting in the set of n non-homogeneous a gebraic equations of the following form:
R{a) + RORY =RV (1=23,...,n), (19)

where the computation of coefficients Rg) and R&i) requires some algebraic manipulations:
RY = 2k + 4K KD - - N1+ K + KV KD 4 )

= AP+ (2 A (K + (4= ADKP K + -

= A2+ Y @2m - A)KPKY K

m=1
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Normal Vibrations of a General Class of Conservative Oscillators 7

= 2k +Z —2m(2m — 1) + (2m)? — KK . K

m=1

= 2k + Z —2m(2m — 1) + (2m +2)2m + VKWKV KP K

m=1

- KJKY . K

2m ceey
RY = 143K + 5KVKY + - — N1+ KV + KPKY + -
= (1-A)+ @ - AD)K{ + (5 AR K +

= (1-A)+3 (2 - MEVKEY . KY)
j=1

= 6K + 3 [-2j(2 + 1) + (2 + 1)? - AIK{K . KY)
j=1

= 6K+ [-2j(2j + 1) + (2) + 3)(2 + DKL), JK{KY . KS)
j=1

- KK . K

In order to obtain unique and non-trivial solutions for the coefficients a(0> and aﬁf, it is
necessary that the coeffi cients of the homogeneous parts of (19) satisfy thecondltlonsR0 # 0,
and Rl # 0,7 = 2,...,n. Examining the analytical expressions (20), it is concluded that in
the critical case when Réi) = Rgi) = 0, asubset of coefficients

K\ = R oA

i+2)(+1)

vanishes, or equivalently, that the linearized natural frequencies of the system satisfy ares-
onance relation of the form w; = jw for some positive integers j = 1,2,... These were
precisely the cases which were eliminated from consideration in Lyapunov’s analysis[1].

L et us now consider the higher order approximations. Supposethat in the series (9) single-

valued solutions z;;(x) are computed, where k& < [ — 1, which are analytical functions over
aclosed domain bounded by the surface IT = h. Considering O(c!) termsin (6) one obtains

1 _
27 (ho 2 W ) + 2z, Y — 2P + w?

3
+ Z xszz kit Z Z; Rz ki [Ré—)l,z'] =0, (21)

where

s)
225 8( 2 ] T )™

j=2m=1
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8 Yu. V. Mikhlin

(s = 1,2, 3), and the second summation sign in the above expression is carried out over all
positive integer solutions of the equation

> (By + 2805+ +1By) =1,
j=2

with
n

n
Z ﬁmj = Qjr, Zajr =7 5(7) = I
m=1 j=2

m=1(jm)! (mh)%r -

rl

Here
Pr(il) = —ZH(T)(.’L‘,.’L‘z,...,{L‘n),
r . (r)
Pr(lz) = _Ha:(xax%'"axn) 1+Z($;)2]] )
L j=2
' [ ]
PO = | I, (w0, ywa) |1+ 32
_ =]

Equations (21) are complemented by the following set of O(c!) boundary orthogonality
conditions:
-1 , .
[af‘;’lwzfﬁ + zw? + Z xgkRé—)kz - Réjl,i]
k=1

=0,
:E:Xj

wherez = X; (j = 1,2) arevibration amplitudes (one of these values, X; = 1).
The equations (21) may be rearranged as follows:

1
20, (ho -3

w2x2> — g’ + zw? + Fi(l) (z) =0, (22)
where the terms Fi(e) (x) consist of aready-computed functions of x. Expressing the solution
of (22) in the series form:

o0
_ 0,4
Tip = E a;i z7,
p)

oneobtains, similarly to the first approximation case, a non-homogeneous recurrent set of lin-
ear equations governing the coefficients a\? . Theindefinite coefficients a(f;) : a(? are obtained

from the boundary conditions for this approximation (conditions of orthogonality). Next the
O(ct) approximation for the total energy, h(9) is determined from (11), while the equation
hO = ho + 3h{ is used to find the value of 1\ which appearsin the calculations of the
next order of approximations.

Needless to say, an aternative series of calculations would be also acceptable, namely,
determining the maximum amplitude X given afixed level of total energy h.
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Normal Vibrations of a General Class of Conservative Oscillators 9

The conclusions concerning the convergence and unambiguous definitions of the coef-
ficients arrived at for the series in the first approximation hold for the series in the ¢-th
approximation as well.

Let us consider the convergence of the series (10). As shown, a series of the form (10)
represents a single-valued (provided K j(-’) # 0 holds) formal solution of a boundary problem
(6), (7) with the coefficientsanalytical in . Inthiscase z;(0) = a1, x; (0) = aj2, where a1,
a;2 can be made sufficiently small by choosing asmall value of the parameter c.

Over a domain II < A al functions involved in (5) are analytical in x. Therefore, it
follows from Poincaré's theorem on the small parameter series expansion [19] that there is
avalue of cop > 0 such that, for all |¢| < co, the series of the form (10) converges in the
domain, represents a unique solution of (6) analytical in ¢ and z, and satisfies the conditions
zj(0) = aj1, 73(0) = ajz; moreover, as ¢ — 0 this solution becomes the trivial generating
solution z;0 = 0 (5 = 2,3,...,n). Since series of the form (10) also satisfy the conditions
(7), the solution can be analytically continued up to the domain boundary II = h.

On having obtained the smooth trgjectory, the problem of finding a periodic solution
reduces to the integration of a conservative system with one degree of freedom.

Concluding thistreatment of normal vibrationsin Lyapunov systems, we notethefollowing.

Firstly, the trajectories z;(x) can be derived not only in terms of power seriesin z, but
also by the method of successive approximations. This method is described below for certain
cases of nonlinearity of the generating system.

Secondly, the requirement of the existence of an energy integral (5) is not essential. In
autonomous systems of the form

Z; = fi(z1,x2,...,2p)
the equations for obtaining the trajectories z;(z), (x = x1) take the form
x;,x‘z + m;fl(xax% E a$n) = fi($a$2a s a$n)' (23)

If an analytical first integral H(x, &, x2,%2,...,%,,Ey) = 0 exists, al that is needed is to
obtain ¢ as a single-valued analytical function of x, z2, 25, ..., x,, «},, and to substitute the
expression obtained into (23). Equations (23) can then be analyzed similarly as above.

Finally, it should be noted that an approach involving the examination of tragjectories in
a configurational space is by no means more complicated than approaches employing series
with coefficients periodic in time or examining phase trajectories.

3. Normal Oscillationsin Conservative Systems Closeto Systems Admitting
Rectilinear Modes

Consider now a system of a more genera class, namely one with a nonlinear generating
system. The smallness of disturbanceswill be evaluated using asmall parameter .
The eguations of motion are expressed in the form

di+F(2(Q17QZ7"'7qn)+€Fq];(Q17QZP"7QTL) =0 (Z :1727...,’”),

where qui + quli is the analytical potential energy, and the unperturbed systems (¢ = 0)
possesses rectilinear modes of vibrationsg; = kiq (¢ = q1,1 = 2,3,...,n).

Consider one of these solutions as a generating one. Rotating the coordinate axes, so that
the new z-axis is directed along the rectilinear trajectory, and the remaining coordinate axes
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10 Yu. V. Mikhlin

are orthogonal to it. A generating solution in the new coordinates is represented as z; = 0
(1=2,3,...,n),z1 =z = z(t).

In particular, for a system with two degrees of freedom

Gi + Fyi(qr,2) =0 (1 =1,2),
alowing the solution ¢2 = kq1, the formulae for the axes rotations are of the form

71 = q1C0SY + g2 SiNY, w2 = —q19NY + g COSYY (¥ = arctank). (24)
The equations of motion in the new coordinates take the following form:

Z; + 1y, (z1,22) =0 (1=1,2),
where

II;, = Fy,cost + Fy,sind, I, = —Fg, sSind + F,, cosd.

Let us assume that in the general case (with n degrees of freedom) after the rotation of the
axes, the system

T + Hgi (1,22, ..., xy) + 6Héi (x1,22,...,2,) =0 (25)
also admits agenerating solution at z; = 0 a ¢ = 0; but this means that
110 (1,0,...,00=0  (i=2,3,...,n). (26)

It isinitially assumed that the unperturbed system is homogeneous, i.e., IIp is an even
homogeneous function of the power of » + 1 in all the variables (r may take the following
valuesr =1, 3,5,...).

Note that, in similarity to the Lyapunov systems examined in the previous section, the
small parameter could be chosen, to scale the amplitude of vibration ¢ = z(0). Substituting
for z; — cx;, one then selects a generating homogeneous system containing the smallest
powers of the positional variables. This generating system may be nonlinear aswell if r > 1.

In order to determine the trgjectories of normal oscillations in the configurational space,
another transition isrequired, thistime from (25) to (6) used in combination with the boundary
conditions (7).

A solution is sought in the form of asmall parameter series:

T = i ez (2) (z = 11). (27)
k=1

Although in this case the generating system is essentially nonlinear, al computations are
similar to those performed for the linearizable case.

L et usassumethat thetotal energy h of the entire system and the energy hg of the generating
system are related as follows:

h = ho + Ehl.
Substituting (27) into (6), one isolates the /-th approximation equationsin «:
25 [ho = 11%(x,0, ..., 0)] + 20, [B" ™ + &},119(s,0, ..., 0)]

ZHM xk5+2x R iy Zx WRP+ R =0, (28)
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Normal Vibrations of a General Class of Conservative Oscillators 11

where
pe
=2 ") Gl ax(as,n aw H H (zjp)’  (s=1,2,3).

j=2p=1

The " signintheaboveexpressioniscarried over al positiveinteger solutions of the equation
where

n—1

> (Byj + 2825+ + mPj) =

j=1
with

m n—1
Zﬁpj = Qjm, Z Ajm =7, 5(7) = I
1 j=1

m!
;Zlil(ajr)! (ph)sr -

P( = —ZH(T) (.’I), L2y ... a$n)a

pg‘f) = [—Hz($,$27 v 7xn)

P(g) = l_Hxi($a$23"'a$n)

n (r)
1+ Z (xﬁc)zl ] )
k=2

The boundary conditions (conditions of orthogonality) corresponding to this approximation
assume the following form:

[—x;gﬂg Z Hzlzk ) O)xkf

=0 (=12, (29)
z=Xj
with the amplitudes X ; (j = 1, 2) and the energy » being computed by i = TI(z, 2, ..., zy,)
where z, (k = 2,3,...,n) should be expressed by the series (27) worked out to an order of

SI nce the unperturbed system is homogeneous, the matrix B = 119, . (7,0,...,0) may be
written as B = b;;,z" 1. Note that, owing to the conservative nature of the system, b;;, = by,
and asymmetric matrix b;;, isreduced to adiagonal form by an invertible linear transformation
of coordinates[20]. Therefore, without loss of generality, one can assumethat in (28) and (29)
the function IT9 , (x,0,...,0) = O for i # k. Hence, only theterms I19_, (,0,...,0)z;
areretained in the expresson S, ., (7,0, 0)xk, and the set (28), together with the
boundary conditions (29) is ‘split’ in the variables z;,.

Having substituted the series z;, = 372 oa( )z' into (28), one finds that the coefficients
Ej) are interrelated by an infinite set of recurrent relationships

2ho(r+7+2)(r+7+ 1)az('€72+j+2 j(i +1)21°(1,0,...,0)a §ZJ)+1

— (G +)12(1,0,...,00a{7, , + 112, (1,0,. ..0>a§f}+l = ¢\, (30)

nody9364. tex; 29/08/1996; 10:06; v.5; p.11



12 Yu. V. Mikhlin

where ¢§f> denotes the terms that depend on the solutions of preceding approximations. The

recurrent relationships can be used to express all coefficients al(-ﬁ) in terms of the leading

coefficients a%) and agf) (- = 2,3,...,n). The convergence of the series is ascertained
precisely as it is done with Lyapunov systems over a domain Il(z, z2,...,z,) < h. An
analytical continuation of the solution up to the ‘boundary’ Il(z,z2,...,z,) = h may be
effected, provided that the boundary conditions are satisfied. Substituting the seriesz;,(x) into
these boundary conditions (29), and in view of the recurrent relationships (30), one obtains

the equations governing a%) , ag? .

S (Roialy + ROaD) = RS (i=2,3,...,n).

i=2

Asin the case of Lyapunov systems, the determinants of coefficients may be represented
as products of an infinite number of factors

Kp = lail,
@i = o [p(p—D21°(1,0,...,0) +plI3(1,0,...,0) =112, (1,0,...,0)] ,  (3D)

where §7 are the Kronecker'sdelta,p = 0,1, 2,3, . ..

When the generating system is linear, the solvability conditions (31) can be shown to
degenerate to the conditions of absence of internal resonances. Hence, the conditions K, # 0
can beviewed asgeneralizations of the conditions of the absence of internal resonances derived
in the linearizable case, and ensure that the analytical, asymptotic solutions z; = z;(x) are
unique and single-valued.

The series xg-é) = Eizl skx(xjk) (7 = 2,3,...,n) may now be substituted into the
equation h = Il(x,z2,...,z,)|s—x and arefined value of the total energy approximation
1(9 may be obtained at agiven amplitude z = X (& = 0). Hence, h\" may be deduced from
h = ho + eh1 to be employed in the next approximationin e.

The considerations concerning the convergence of the series (27) given in the preceding
section still hold.

Notethat in the absence of theassumption of ‘ splitting’ of thefirst approximation equations,
the conditions (31) for the generating of homogeneous systems become different. Inthegeneral
case they take the following form:

Kp = laijl # 0,
g = o) [p(p — 12M°(L,0,...,0) +pl19(1,0,...,0) — 10, (1,0,...,0)] ,
(p=0,1,23,...). (32)

It is worth noting that at » = 1 the conditions (32) become w; # pw which for Lyapunov
systems meant that in this case inner resonances in the generating linear system are not
considered.

Proceeding to non-homogeneous generating systemswith the potential energy I1°, we shall
confine the discussion with the first approximation in «:

217 {h —11%z,0,... 70)] + 2 [—Hg(x, 0,... ,x)}
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—|—ZH$ 0,0, 0z + 113 (2,0,...,0) =0 (i=2,3,...,n). (33)

The homogeneous part of the set (33) contains variational equations for the generating
of normal vibrations. Let us assume that the variational equation set may be ‘split’ into n
independent equations by an invertible linear transformation with constant coefficients. The
possibility of such ‘splitting’ is discussed in more detail in [21, 22].

Hereit will be shown that, for the case of two degrees of freedom, it is always possible to
effect the ‘splitting’ by rotating the axes (24). Indeed, introduce the transformation (24), and
expand the potential energy I1%(x1, 2,) into an z, (z1 = x) power series:

1 1

(2, 22) = 1°(z, 0) + I3, (2, 0022 + ;11,0 (, 0)23 + 115,00,
The condition of existence of anormal vibration form z, = 0 is given by I12 (z,0) = 0, and
the equations of motion take the form

z,0)z3 + - --

d 2
i+ 10(2,0) + 110, (2,02 + 0(ad) = 0,
0 d a;% 3
&+ 11, (z,0)z2 + o szxzxz( 0)7 + O(z3) = 0.

Here, the variational equationsin v and v for the normal vibrationsz = z(t), zo = O are
asfollows:
d
i+ —I1°

dg  ©ow2
(z,0)v = 0. (39

The set of equationsisthus‘split’.
Introducing a new independent variable z instead of ¢, one obtains, in the place of (34),

20" [h — 1%z, 0)] +o [—Hg(:p, 0)] +19,, (z,0)0 = 0. (35)

This equation corresponds to (33) at n = 2 when the latter retains only a homogeneous
constituent of the potential energy.

Since a rectilinear normal mode of vibration has only two cusps, the kinetic energy k& =
h — T1%(z, 0) vanishes twice over one period. Therefore, equation (35) has two regular finite
singular points on the real axis.

There exist classes of potentials for which equation (35) has been studied so thoroughly
that it is possible to develop a system of solutions either in power series (with due regard to
singularities), in trigonometric series, or in the form of seriesin certain specia functions. If
1191, 2,) is a homogeneous even function, (35) may even be reduced to a hypergeometric
equation by the substitution z? = z, where p is the degree of homogeneity [22]. If the
potential energy I1°(x, z») contains terms of second and fourth powers of = and x5, (35) is
the Lame equation [23]. Denote by {w1(x), w2(x)} afundamental set of solutions for (35),
and it becomes possible to construct a general solution of the first approximation equation in
e (33):

(,0)u =0,

v+H0

Z2T2

v = O un(a) + O uola) +we) [ T2 gy [TBO0 g,
X X
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14 Yu. V. Mikhlin

where

w1 w1
wy wp

A= = const.,

and w1, wy are either hypergeometric or Lame functions.

The constants CF), él) should be determined from the regularity conditions for the
solution in any point of the interval TI°(z,0) < h. Suppose that the powers of the singular
points X; (j = 1,2) (zero kinetic energies) be equal to (0, a1) and (0, ), respectively. In
particular, for the Lame equation av; = az = 1/2. Then, in the vicinity of these points the
general solution is decomposed as follows:

z21 = A1(Ch, C2) fa(z) + A2(C1, C2) fo(@)(z — X1)™,

z21 = B1(C1,C2)g1(x) + B2(C1, C2)g2(z)(x — X2)*2.
Evidently, the regularity conditions for this solution are of the form

Ay(Ch,C) = By(C1,C2) = 0.

A solution analytical in x is similarly derived in the next approximation in ¢ obtained either
through the construction of vibration normal modes as ¢ series or by the iteration method.

A generalization to the case of n degrees of freedom (n > 2) is evident, provided the set
of variational equations can be ‘split’.

Some applications of the asymptotic methodology for approximating the NNMs are pre-
sentedin[12, 24]. In particular, in[12] the asymptotic methodol ogy isimplemented to analyze
the free vibrations of two unit masses connected by means of three strongly nonlinear stiff-
nesses with cubic nonlinearity. The zeroth order and O(e) approximations to NNMs are
calculated.

The systems considered above can be obtained in calculations of nonlinear vibrations of
rods, strings, plates, shells and other elastic systems (using the Bubnov—Galerkin technique)
(see, for instance, [2, 25]). Some examples of the NNMs analysisin nonlinear elastic systems
using Bubnov—Galerkin discretization are presented in [26].

4, Conclusions

Normal modes of vibrations with curvilinear trajectories in the configuration space are con-
sidered. The corresponding boundary problem is formulated. It is shown that such normal
modes may be constructed for the Lyapunov systems and for a more general class of con-
servative systems, neighboring systems possessing NNMs with rectilinear trgjectories. The
convergence of the power series obtained was considered. Under some conditions (that gen-
eralize the conditions of internal resonances in the quasilinear case) single-valued solutions
do not exist.
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