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Abstract. A perturbation methodology and power series are utilized to the analysis of nonlinear normal vibration
modes in broad classes of finite-dimensional self-excited nonlinear systems close to conservative systems taking
into account similar nonlinear normal modes. The analytical construction is presented for some concrete systems.
Namely, two linearly connected Van der Pol oscillators with nonlinear elastic characteristics and a simplest two-
degrees-of-freedom nonlinear model of plate vibrations in a gas flow are considered.

Periodical quasinormal solutions of integro-differential equations corresponding to viscoelastic mechanical
systems are constructed using a convergent iteration process. One assumes that conservative systems appropriate
for the dominant elastic interactions admit similar nonlinear normal modes.

Keywords: Self-excited nonlinear systems, nonlinear normal modes (NNMs), viscoelastic nonlinear systems,
power series, iterations.

1. Introduction

Lyapunov proved that nonlinear finite-dimensional systems with an analytical first integral
allow a one-parameter family of periodic solutions which tend towards linear normal vibration
modes as amplitudes tend to zero. Natural frequencies of corresponding linearized systems
must not be integrally related [1]. The Lyapunov’s solutions possess all the properties of linear
normal modes [2].

Nonlinear normal vibrations modes (NNMs) are a generalization of the normal (principal)
vibrations of linear systems. In the normal mode, a finite-dimensional system behaves like a
conservative one in having a single degree of freedom, and all position coordinates can be
analytically parametrized by any one of them.

Rosenberg, in a series of papers [3–5] provided analytical methods for computing NNMs.
He defined them as ‘vibrations in unison’ and introduced a broad class of essentially nonlinear
conservative systems allowing for NNMs with rectilinear trajectories in a configuration space
(‘similar’ NNMs).

For example, ‘homogeneous systems’ whose potential is an even homogeneous function of
the variables belong to such a class. It is interesting to note that the number of the NNMs may
exceed the number of degrees of freedom of the oscillator. In general, the NNMs trajectories
are curvilinear instead of straight lines in linear systems.
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For some particular cases, curvilinear trajectories were analyzed by Rosenberg and Kuo
[5] and by Rand [6]. The power series method was proposed by Manevich and Mikhlin [7] for
the construction of the curvilinear trajectories of NNMs.

Later, new results concerning NNMs of conservative systems were performed by several
authors, including Vedenova et al. [8], Vakakis [9], Vakakis and Rand [10], Shaw and Pierre
[11, 12], Nayfeh and Nayfeh [13], and Mikhlin [14].

In [8], nonlinear normal mode localization is studied in non linear systems with impact
nonlinearities. In [9], for an oscillator with weak coupling stiffness, both localized and nonlo-
calized modes are detected using an asymptotic methodology. In [10], the NNMs and global
dynamics of nonlinear systems are analyzed by means of Poincaré maps. In [11, 12], the
authors reformulated the concept of NNMs for a general class of nonlinear discrete oscillators.
The analysis is based on the computation of invariant manifolds of motion on which the NNM
oscillations take place. In [13], a complex invariant manifold formulation is proposed. In [14],
Padé approximations are used for an analysis of NNMs with large amplitudes.

Note that publications on the generalization of NNMs to nonconservative systems are not
numerous.

It is well known that forced vibrations in nonlinear systems with one degree of freedom
and small periodic disturbances are similar to those in an undisturbed conservative system (in
the resonance region).

It should be noted that periodic solutions in nonautonomous systems close to Lyapunov
systems were thoroughly investigated by Malkin [15].

The Rauscher method was used for analyses of normal vibrations in nonautonomous sys-
tems by Kinney and Rosenberg [16]. To solve the problem, one assumes that the external
periodic force is proportional to some chosen positional coordinate raised to such a power
that the resultant autonomous system is homogeneous.

NNMs in general finite-dimensional nonautonomous systems close to conservative sys-
tems allowing similar NNMs were considered by Mikhlin [17]. Rauscher’s ideas and the
power-series method for trajectories in a configurational space are used in the construction
of resonance solutions.

Some other works on NNMs in nonautonomous systems, have been published by Yang and
Rosenberg [18], Szemplinska-Stupnicka [19], and Vakakis and Caughey [20].

Of particular note is the work by Rand and Holmes [21], where periodic solutions of two
weakly coupled Van der Pol oscillators are analyzed. Note that NNMs in a model of two
strongly coupled Van der Pol oscillators are considered in this work.

Basic and new results on NNMs are presented in the book by Vakakis et al. [22] which
describes quantitative and qualitative analyses of NNMs in conservative and nonautonomous
systems, including localized modes, an analysis of stability, a generalization, and an analysis
of NNMs in distributed systems.

Here, the perturbation methodology is utilized for the analysis of NNMs in broad classes
of finite-dimensional self-excited nonlinear systems close to conservative systems allowing
normal vibrations with rectilinear trajectories in a configuration space (Section 1). The an-
alytical construction of NNMs is presented in Section 2 for some concrete systems. The
first of them represents two linearly connected Van der Pol oscillators with nonlinear elastic
characteristics. Another example refers to the problem of plate vibrations in the flow of gas.
A simple, two-degrees-of-freedom nonlinear model is considered. In Section 3, periodical
quasinormal solutions of integro-differential equations corresponding to viscoelastic mechan-
ical systems are constructed. One assumes that elastic forces are dominant and conservative
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systems appropriate for the elastic interactions allow similar NNMs which are selected as
generative solutions. A convergent iteration process is used here.

2. Normal Vibrations in Near-Conservative, Self-Excited Nonlinear Systems

2.1. EQUATIONS DESCRIBING THE TRAJECTORIES OF NNMS

We will demonstrate that the approaches for analysis of NNMs in conservative systems are
applicable to near-conservative autonomous systems with small self-excited perturbations. We
will also consider modes when all positional coordinates of the finite-dimensional, self-excited
system are linked. In relation to these modes, the system behaves like a single-degree-of-
freedom one. The periodic solutions close to NNMs in the generating conservative system
could be called nonlinear normal modes (NNMs) of the self-excited nonlinear system.

Consider the following near-conservative system:

ẍi +�xi (x1, x2, . . . , xn)+ εgi(x1, ẋ1, . . . , xn, ẋn) = 0, (2.1)

where ε is a small parameter and the functions gi may be nonlinear with respect to ẋi . The
functions fi and � are assumed to be analytical in xi , ẋi ; a potential energy � is subject to
some limitations which will be shown later. The system may involve friction of any physical
nature, such as viscous, dry, or turbulent. The conditions that ensure the occurrence of self-
excited vibrations (limiting cycles) are discussed later.

Assume that a conservative system (c = 0) permits similar NNMs, i.e., normal modes with
rectilinear trajectories in a configuration space: xi0 = kixi0 (i = 2, . . . , n; ki are constants).
Any terms may be regarded as a perturbation.

Consider one of these NNMs as a generating one. Rotating the coordinate axes so that the
new x-axis is directed along the rectilinear trajectory, one obtains a generating solution in the
new coordinates as

xi0 (i = 2, 3, . . . , n), xi0 ≡ x = x(t). (2.2)

Select some positional variable x ≡ xi .
Let us find a solution that all phase coordinates are defined as single-valued and analytical

functions of x:

xi = xi(x, ε), ẋ = ẋ(x, ε), ẋi = ẋi (x, ε). (2.3)

Introducing a new independent variable x instead of t , one obtains from (2.1) the equations
describing the trajectories of NNMs:

x′′
i (ẋ(x))

2 + x′
i[−�x(x, x2(x), . . . , xn(x))− εg1(x, ẋ(x), x2(x), ẋ2(x), . . .)]

+ �xi (x, x2(x), . . . , xn(x))+ εgi(x, ẋ(x), x2(x), ẋ2(x), . . .) = 0

(i = 2, 3, . . . , n). (2.4)

Here and henceforth, a prime denotes differentiation with respect to x; it is clear that ẋi (x, ε)
= x′

i (x, ε)ẋ.
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Select the trajectory return points where all velocities are equal to zero. When x = Xj
(j = 1, 2) and ẋ = 0, we obtain the additional conditions from (2.4):

{
x′
i [−�x(x, x2(x), . . . , xn(x))− εgi(x, ẋ(x), x2(x), ẋ2(x) . . .)]
+�xi (x, x2(x), . . . , xn(x))+ εgi(x, ẋ(x), x2(x), ẋ2(x) . . .)

}∣∣
x=Xj = 0

(i = 2, 3, . . . , n; j = 1, 2). (2.5)

Here (X, x2(X), . . . , Xn(X)) being the trajectory return points. Equations (2.4) in combi-
nation with conditions (2.5) allow a univalent determination of xi(x). Note that equations
similar in form and additional boundary conditions were previously considered in the case of
conservative systems [2–4, 22, 23].

In the zero approximation (ε = 0) ẋ2
0 = 2[h0 −�(x, 0, . . . , 0)], where h0 is the energy of

the nonperturbed conservative system. We shall restrict our consideration of (2.4) to the first
approximation in ε:

2x′′
i1[h0 −�(x, 0, . . . , 0)] + x′

i1[−�x(x, 0, . . . , 0)]

+
n∑
k=2

xk1�xixk (x, 0, . . . , 0)+ gi(x, ẋ0(x), 0, . . . , 0) = 0

(i = 2, 3, . . . , n). (2.6)

In this approximation, the boundary conditions are obtained from (2.4) at ẋ0 = 0, x = Xj
(j = 1, 2):

{
x′
i1[−�x(x, 0, . . . , 0)] +

n∑
k=2

xk1�xixk (x, 0, . . . , 0)

+ g(x, ẋ(x), 0, . . . , 0)
}∣∣∣∣
x=X1,2

= 0

(i = 2, 3, . . . , n). (2.7)

The power series method may be applied to find xi1(x).

2.2. THE POWER SERIES METHOD

It is assumed, for example, that the generating conservative system is homogeneous, i.e. � is
an even homogeneous function of the power of r+1 in all the variables (r may take the values
r = 1, 3, 5, . . .).

Since the unperturbed system is homogeneous, the matrix B = �xixk (x, 0, . . . , 0) may be
written as B = bikX

r−1. Note that owing to the conservative nature of the system, bik = bki ,
and the symmetric matrix bik is reduced to a diagonal form by nondegenerate linear trans-
formation of the positional coordinates [24]. The transformation can be chosen in order to
preserve a generating solution in the form (2.1). Therefore, without loss of generality, one can
assume that in (2.6) and (2.7) the function �xixk (x, 0, . . . , 0) = 0 for i �= k. Hence, the set
(2.6),together with the boundary conditions (2.7) is ‘split’ in the variables xi1.
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Having substituted the series

xi1 =
∞∑
j=0

aij x
j (2.8)

into (2.6), one finds that the coefficients aij are interrelated by the following infinite set of
recurrent relationships (it is written out coefficients at xr+j ):

2h(r + j + 2)(r + j + 1)ai,r+j+2 − j (j + 1)2�(1, 0, . . . , 0)ai,j+1

− (j + 1)�x(1, 0, . . . , 0)ai,j+1 +�xixi (1, 0, . . . , 0)ai,j+1 = φi,r+j

(j = 0, 1, 2, . . .), (2.9)

where φi,r+j denotes the corresponding terms in the Taylor-series expansions of the functions
gi . The recurrent relationships can be used to express all coefficients aij in terms of the leading
coefficients ai0 and ai1 (i = 2, 3, . . . , n). Substituting the series xi1(x) into the boundary
conditions (2.7), and in view of the recurrent relationships (2.9), one obtains the equations
governing ai0, ai1:

n∑
i=2

(R0iai0 + R1iai1) = R2i (i = 2, 3, . . . , n). (2.10)

The determinant of the system may be represented as products of an infinite number of
factors [2, 22, 23]

Kp = |qij |,
qij = δ

j

i [p(p − 1)2�(1, 0, . . . , 0)+ p�x(1, 0, . . . , 0)−�xixi (1, 0, . . . , 0)], (2.11)

where δji are Kronecker’s delta, p = 0, 1, 2, 3, . . . .
When the generating system is linear, conditions (2.11) mean an absence of internal reso-

nances in the generating system.
The procedure presented here is similar to that applied in a conservative case [2, 22, 23],

and it is possible to make use of analogous arguments. In particular, a convergence of the
series (2.8) can be proved by L’Hospital’s rule.

It follows from Poincaré’s theorem on the small parameter series expansion [25] that there
is a value of ε0 > 0 such that, for all |ε| < ε0, the series in powers of ε of the functions (2.3)
converge in the domain; as ε = 0 this solution becomes the trivial generating solution xj0 = 0
(j = 2, 3, . . . , n) (see the details in [2, 22, 23]).

Note that the trajectories xj (x) can be derived not only in terms of power series in x, but
also by the method of iteration [2, 23].

2.3. SINGLE-DEGREE-OF-FREEDOM AUTONOMOUS SYSTEM AND A POTENTIALITY

CONDITION

After having obtained a smooth NNM trajectory, the problem of finding a periodic solution
reduces to the integration of the following single-degree-of-freedom autonomous system:

ẍ +�x(x, x2(x), . . . , xn(x))+ εg1(ẋ, x(x), x2(x), ẋ2(x), . . .) = 0.
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The solution x(t) is determined as an inversion of the following quadrature:

t + φ = 1√
2

x∫
x(0)

dξ

(h−�(ξ, x2(ξ), . . .)− εg1(ξ, ẋ(ξ), x2(ξ), . . .))1/2
, (2.12)

where h is the integration constant which has the meaning of an energy constant of the condi-
tional single-degree-of-freedom system realizable along the NNM analytical trajectory; φ is a
phase of the solution which can be taken to be equal to zero because the original system (2.1)
is autonomous.

Next, the equation of phase trajectories is of the form (ẋ = v)

dv

dx
= −�x(x, x2(x), . . . , xn(x))+ εg1(x, v, x2(x), x

′
2(x)v, . . .)

v
.

In the general case, one has to employ approximate methods to find all phase trajectories
and due allowance is to be made for the small values of ε. However, this equation allows exact
integration if g1 is a linear function with respect to w = v2.

At the analytical closed phase trajectory of the limiting cycle, the system’s behavior is
similar to that of a conservative system with one degree of freedom. Therefore, the condition
that the work of all forces over the period is equal to zero should hold (the condition can be
called a potentiality condition):∮

g1(x, ẋ(x), x2(x), ẋ2(x), . . .) dx = 0

or

T∫
0

g1(x, ẋ(x), x2(x), ẋ2(x), . . .)ẋ dt = 0. (2.13)

The integral is taken over the period of vibrations. Equation (2.8) is used to find the value
of the energy h0 (and, accordingly, the amplitude values of Xj ) for the generating solution of
the conservative system, i.e. the limiting solution (at ε tending to zero) for the required NNMs
of the self-excited system (2.1).

3. Self-Excited Systems: Examples

3.1. TWO LINEARLY CONNECTED VAN DER POL OSCILLATORS

As a simple example, let us consider two linearly connected Van der Pol oscillators with
nonlinear elastic characteristics:

q̈1 + q1 + αq3
1 + β(q1 − q2)− ε(1 − q2

1 )q̇1 = 0,

q̈2 + q2 + αq3
2 + β(q2 − q1)− εγ (1 − q2

2 )q̇2 = 0. (3.1)

Here ε is a small parameter. Two vibration modes may obtained in the zero approximation by
ε: q2 = ±q1. Let us introduce new coordinates x, y as follows:

q1 + q2 = x, q1 − q2 = y.
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In these coordinates, one of the NNMs, the so-called in-phase mode is governed by y0 = 0,
x0 = x0(t) in the zeroth approximation by ε, and

ẍ0 = −x0 − α

4
x3

0 , ẋ2
0 = 2

(
h− x2

0

2
− αx4

0

16

)
, (3.2)

where h is the system energy constant.
An equation describing the trajectory y(x) in the first approximation with respect to ε has

the form

y′′
1 ẋ

2
0 + y′

1ẍ0 + y1

(
1 + 2β + 3α

4
x2

0

)
−

(
1 − x2

0

4

)
ẋ0

2
(1 − γ ) = 0. (3.3)

The equation should be solved together with the boundary conditions of the form (2.5) (at
ẋ0 = 0, x0 = Q):

y′
1(Q)ẍ0(Q)+ y1(Q)

(
1 + 2β + 3α

4
Q2

)
= 0. (3.4)

Substituting the solution y(x) as a power series into (3.3), we obtain a set of recurrent equa-
tions in the expansion coefficients. (Note that ẋ0 must be presented as a power series by x0

too). One must also use the condition (3.4). Let α = 1.5; β = 1.5; γ = 0.5, ε = 0.2. In the
first approximation, one obtains the trajectory of the in-phase vibration mode:

y1 � −0.07203 + 0.01330x2 − 0.000077x4 .

Here x(0) = Q = 4. The last value was obtained from the potentiality condition (2.8) in the
first approximation with respect to ε in a quasiharmonic approximation.

The second of the NNMs, the so-called out-of-phase mode, is governed by x0 = 0, y0 =
y0(t) in the zeroth approximation by ε; respectively,

ÿ0 = −(1 + 2β)y0 − α

4
y3

0 ; ẏ2
0 = 2

(
h− (1 + 2β)

y2
0

2
− αy4

0

16

)
. (3.5)

The equation describing the trajectory x(y) approximation with respect to ε has the form

x′′
1 ẏ

2
0 + x′

1ÿ0 + x1

(
1 + 3α

4
y2

0

)
−

(
1 − y2

0

4

)
ẏ0

2
(1 − γ ) = 0. (3.6)

The equation should be solved together with the boundary conditions of the form (2.7) (at
ẏ0 = 0, y0 = Q):

x′
1(Q)ÿ0(Q)+ x1(Q)

(
1 + 3α

4
Q2

)
= 0. (3.7)

Substituting the solution x(y) as a power series into (3.6) and (3.7), one obtains, in the first
approximation, the following trajectory of the out-phase vibration mode:

x1 � −0.10179 + 0.00881y2 − 0.000386y4 .

Here y(0) = Q = 4. The value was obtained from the potentiality condition as above.
There is good agreement between the approximation solution and the numerical calcula-

tions checked by a computer.
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3.2. PLATE VIBRATIONS IN THE FLOW OF GAS

Another example refers to the problem of plate vibrations in the flow of gas. A simple, two-
degrees-of-freedom model is chosen.

Next, q1 is the vertical displacement of the bend of the center axis of the plate; q2 is the
angle of rotation around the axis.

Both the restoring force P(q1) and the restoring moment M(q2) are nonlinear:

P(q1) = (d1 + d2q
2
1 )q1, M(q2) = (d3 + d4q

2
2 )q2,

where d1, d2, d3, d4 are coefficients depending on the plate’s elastic characteristics.
The aerodynamic lift is

A(q2) = σv2 sin 2q2 � σv2

(
2q2 − 4q3

2

3

)
,

where v is the flow velocity, and σ is dependent on the flow density and the airfoil aerodynamic
chord.

Let ρ be the radius of inertia with respect to the bend (peck) center axis, l is the distance
from the center of rigidity to the center of mass, andm is the mass of the airfoil per unit length.
The equations of motion for the system are the following:

mq̈1 −mlq̈2 + (d1 + d2q
2
1 )q1

= σv2

(
2q2 − 4q3

2

3

)
−mlq̈1 +m(ρ2 + l2)q̈2 + (d3 + d4q

2
2 )q2 = 0. (3.8)

The analysis of the NNMs of the system (3.8) is based on the assumption that the values
of d3 and d4 are close to those of d1 and d2 respectively, the sum ρ2 + l2 is close to unity and
l2 is much smaller than unity.

Make the coordinate transformation,

q1 + q2 = x
√

2, q1 − q2 = y
√

2.

One obtains the following equations with respect to variables x, y in place of the system (3.8):

mẍ + d1x + 0.5d2(x
3 + 3xy2)

= ε
{
mlẍ + σv2[(x − y)− (x − y)3/3] + 0.5m(1 − ρ2 − l2)(ẍ − ÿ)

+ [(d1 − d3)+ (d2 − d4)(x − y)2/2](x − y)/2}
,

mÿ + d1y + 0.5d2(y
3 + 3yx2)

= ε
{ −mlÿ + σv2[(x − y)− (x − y)3/3] − 0.5m(1 − ρ2 − l2)(ẍ − ÿ)
− [(d1 − d3)+ (d2 − d4)(x − y)2/2](x − y)/2}

, (3.9)

where ε is a formal small parameter characterizing the relative smallness of the right-hand
sides of Equations (3.9). Consider the in-phase NNM close to the mode q1 = q2 or x = x(t),
y = 0 in the zeroth approximation with respect to ε. Make use of the relations (2.4) and (2.5).
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The corresponding equation in the first approximation with respect to ε for the mode y(x) is

2y′′
(
h0 − d1

2
x − d2

8
x

)
− y′

(
d1x + d2

2
x3

)
+

(
d1 + 3

2
d2x

2

)
y

= σv2

(
x − x3

3

)
+ (1 − ρ2 − 1)2

2

(
d1x + d2

2
x3

)

−
[
(d1 − d3)+ (d2 − d4)

x2

2

]
x

2
,

while the boundary conditions (ẋ = 0, x = Q) may be written as
{
y′

(
−d1x − d2

2
x3

)
+

(
d1 + 3

2
d2x

2

)
y − σv2

(
x − x3

3

)

+ (1 − ρ2 − l2)
2

(
d1x + d2

2
x3

)
−

[
(d1 − d3)+ (d2 − d4)

x2

2

]
x

2

} ∣∣∣∣
x=Q

,

h0 being the energy of the generating system.
Numerical calculations were performed for m = 1, l = 0.2, d1 = 2, d2 = 1, d3 = 2.3,

d4 = 1.1, σ = 0.5, ρ = 1, and v2 = {0; 0.2; 0.4}.
The following expressions were obtained for the NNM y = y(x), x(0) = Q = 1 at ε = 1:

v2 = 0 : y � 0.0374x + 0.0018x3 − 0.00014x5,

v2 = 0.2 : y � 0.040x + 0.009x3 − 0.0005x5,

v2 = 0.4 : y � 0.125x + 0.022x3 − 0.001x5.

The potentiality condition (2.8) for the system at hand is identically satisfied for any vi-
bration mode defined by an analytical function y(x) (or x(y)), and therefore the NNMs are
dependent on two free parameters, namely the vibration amplitude Q and the phase φ.

4. Iterative Computation of Quasinormal Vibrations in Nonlinear Viscoelastic
Mechanical Systems

Here we will construct periodical solutions of integro-differential equations corresponding
to some viscoelastic mechanical systems. One assumes that elastic forces are dominant. A
conservative system corresponding to the elastic interactions is selected as generative and the
NNMs of the system are selected as generative solutions.

4.1. CONSTRUCTION OF PERIODICAL SOLUTIONS IN TWO-DEGREES-OF-FREEDOM

NONLINEAR MODEL

Analysis of vibrations in nonlinear viscoelastic mechanical systems is associated with studies
into integro-differential partial equations [26, 27].

By representing solutions of such equations as linear combinations of coordinate functions
with time-dependent coefficients and by using the Bubnov–Galerkin method, sets of nonlinear
integro-differential equations are obtained.
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Restricting ourselves to two principal coordinate functions, we obtain the following set of
equations with respect to the required coefficients of the linear combinations x1(t), x2(t):

ẍi +�xi (x1, x2) = εgi (i = 1, 2), (4.1)

where � = �(x1, x2) is the potential energy that corresponds to the principal elastic interac-
tions and is assumed to be an analytical function of its arguments; ε is a small parameter. Here
and later on, the case of forced resonance will be called Case A, that of self-excited vibrations,
Case B.

In Case A

gi = gi1(t, x1, x2, ẋ1, ẋ2)+
t∫

−∞
Ri(t − s)gi2(x1(s), x2(s)) ds,

while in Case B

gi = gi1(x1, x2, ẋ1, ẋ2)+
t∫

−∞
Ri(t − s)gi2(x1(s), x2(s)) ds,

Here, gi1, gi2 are analytical functions which, in Case A, are continuous and periodical in t
with a period of T ; Ri are relaxation kernels that satisfy the following conditions:

dRi(τ)

dτ
< 0,

∞∫
−∞

Ri(τ) dτ = 1.

We assume that a generating system (at ε = 0),

ẍi +�xi (x1, x2) = 0,

allows similar NNMs of the type

x2 = kx1, (4.2)

wherein the constants k are defined by the algebraic equation

k�xi (xi, kxi) = �x2(x1, kx1).

Without loss of generality, we assume that after some rotation of the coordinate system (an
axis of a new coordinate system is directed along the rectilinear trajectory of solution (4.2)),
the generating system takes on the form

ẍi0 +�x1(x10, x10) = 0, x20 = 0,

i.e., k = 0 for the similar NNMs under condideration and the generating solution in Case A is

x10 = x10(F,2, t + φ), x20 = 0, (4.3)

in Case B,

x10 = x10(F,2, t), x20 = 0, (4.4)
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where F and2 are two amplitudes of vibrations (two values of x10 that correspond to the cusp,
ẋ10 = 0); φ is the generating solution phase which, in Case B, is arbitrary due to the system
being autonomous and therefore is not explicitly introduced into the solution. The amplitudes
F and 2 are related to the period of the generating solutions (4.3) and (4.4) by the equality

T (F,2) = √
2

F∫
2

dx

(h−�(x, 0))1/2 ,

where h is the energy of the generating solution,

h = �(F, 0) = �(2, 0).

Without loss of generality, one assumes that F is greater or equal to 2.
Let us look for a solution of the original perturbed system (4.1) in the form

x1 = x10 + ξ, x2 = η.

In order to find ξ and η, we obtain from (4.1), selecting a linearized part of the system with
respect to ξ and η:

ξ̈ + p1(x10)ξ = G1, η̈ + p2(x10)η = G2, (4.5)

where

p1(x10) = �x1xi (x10, 0), p2(x10) = �x2x2(x10, 0);
G1 = εg1 −�x1 − p1(x10)ξ, G2 = εg2 −�x2 − p2(x10)η,

here g1, g2,�x1 ,�x2 are calculated as x1 = x10 + ξ , x2 = η.
It is clear that the first equation of (4.5), linearized with respect to ξ and η, is a variational

equation for the generating solution. Therefore, fundamental solutions of the linearized sys-
tem can be obtained by the derivation of the generating solution with respect to the arbitrary
parameters, namely the amplitude F and the phase φ [15]:

w11 = 1

ω

dx10

dφ
= γ ẋ10 (γ = const.), w12 = 1

ω′
dx10

dF
,

where

ω = 2π

T (F)
, ω′ = dω

dF
.

The first fundamental solution is periodical, while the second one involves a product of some
periodical function by t .

A fundamental solutions of the second linearized equation in (4.5) may be obtained for
certain classes of potential functions � in the form of hypergeometric functions or Lamé
functions [22, 23, 28]. In other cases, it may be constructed by a power series expansion in
x10 or by other methods, see [2, 23]. Let us denote the fundamental solutions by w21, w22.
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4.2. ITERATION PROCESS

In order to find periodical quasinormal solutions of Equations (4.5), we employ here the
following iteration process:

ξk+1 = 1

71

t∫
0

Gτ1k(w
τ
11w

t
12 − wτ12w

t
11) dτ + 1

T71

(
w12 − w11

ẇ0
12

ẇ0
11

) t∫
0

Gτ1kw
τ
12 dτ,

ηk+1 = 1

72

t∫
0

Gτ2k(w
τ
21w

t
22 − wτ22w

t
21) dτ +D1kw21 +D2kw22,

ξ̇k+1 = 1

71

t∫
0

Gτ1k(w
τ
11ẇ

t
12 − wτ12ẇ

t
11) dτ + 1

T71

(
ẇ12 − ẇ11

ẇ0
12

ẇ0
11

) t∫
0

Gτ1kw
τ
12 dτ,

η̇k+1 = 1

72

t∫
0

Gτ2k(w
τ
21ẇ

t
22 − wτ22ẇ

t
21) dτ +D1kẇ21 +D2kẇ22, (4.6)

Here

7i =
∣∣∣∣ wi1 wi2ẇi1 ẇi2

∣∣∣∣ = const.; f θij (z) = fij (z)|z=θ;

ξ
(n)
k (n = 1, . . . , 4) are substituted into the right-hand sides of the above relationships (4.6)

together with φk (Case A) or Fk (Case B); Dik are arbitrary constants.
Let us use the conditions of T -periodicity of the functions ηk+1, η̇k+1, to find the unknown

constants D1k, D2k (the period T is given in Case A and unknown in Case B):

D1k(w
T
21 − w0

21)+D2k(w
T
22 − w0

22)

= −w
T
21

72

T∫
0

Gτ2kw
τ
22 dτ + wT22

72

T∫
0

Gτ2kw
τ
21 dτ,

D1k(ẇ
T
21 − ẇ0

21)+D2k(ẇ
T
22 − ẇ0

22)

= − ẇ
T
21

72

T∫
0

Gτ2kw
τ
22 dτ + ẇT22

72

T∫
0

Gτ2kw
τ
21 dτ. (4.7)

Besides: the periodicity conditions for ξk+1 and ξ̇k+1 must be written in Case A:

T∫
0

Gτ1kw
τ
11 dτ = 0,

T = T (F,2) = √
w

F∫
2

dx

(�(F, 0)−�(x, 0))1/2 (4.8)
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(the period T is known); �(F, 0) = �(2, 0).
From this set, the phase φ may be found in the corresponding approximation of the pertur-

bation method, together with the amplitudes F , 2 of the generating solution.
In Case B, the periodicity conditions for ξk+1 and ξ̇k+1 have a slightly different form:

Tk∫
0

Gτ1kw
τ
11 dτ = 0,

T = Tk = √
w

Fk∫
2k

dx

(�(Fk, 0)−�(x, 0))1/2 (4.9)

(the period Tk is not known); �(Fk, 0) = �(2k, 0).
Equations (4.9) may evaluate the period Tk and the amplitudes Fk , 2k of generating solu-

tion in the corresponding approximation with respect to ε.
It is assumed that all variables and parameters vary over a limited region, all functions in

(4.1) and their derivatives, inclusive of those of third-order, are bounded, satisfy the Lipschitz
condition, and wij , ẇij ,7ij (i, j = 1, 2) are also bounded; the remaining conditions are given
in [29, 30].

For the iterations of (4.6) to converge to the solution of the initial integro-differential equa-
tions,the following principal conditions are necessary: the variables ξk+1, ηk+1, ξ̇k+1, η̇k+1

should remain in a bounded region as should the phase φk and the amplitudes F and 2 in
Case A or the period Tk and the amplitudes Fk, 2k in Case B. The operators that determine
the transformation (4.6) should be contracting; the periodicity conditions (4.8) or (4.9) should
be uniquely solvable with respect to φk, F , 2 or Tk, Fk, 2k; and the corresponding operators
determining the phase, amplitude, and period of the vibrations should be contracting.

These requirements lead to a set of inequalities that make the small parameter ε bounded
above [29, 30]; the inequalities are cumbersome and therefore are not shown here.

In the first approximation of the iteration process, the number of periodic solutions of the
set of integro-differential equations is determined by the number of roots of Equations (4.8)
in Case A or the number of roots Fk of Equations (4.9) in Case B. When ε tends towards zero,
all these solutions tend towards NNMs of the generating conservative (elastic) system.

4.3. RESONANCE NONLINEAR TRANSVERSAL VIBRATIONS OF A VISCOELASTIC ROD

By way of example, let us consider resonance nonlinear transversal vibrations of a viscoelastic
rod. Within the framework of the well-known Kirchhof hypothesis, the equations of motion
are taken in the form

utt + EIuxxxx − EI

2F

I∫
0

(uξ )
2 ]rmdξuxx

= ελ sinpt
∞∑
k=1

ak sin
kπx

1
+ ε

t∫
−∞

R(t − s)u3(s) ds,

where u is the transversal displacement; x is the longitudinal independent variable; E is the
Young modulus; I is the moment of inertia, l is a distance between end points, R(z) is the
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relaxation kernel, F is an area of the transversal cross-section of the rod, and ε is a small
parameter. The rod ends are assumed to be restrained.

Setting the spatial wave formation in the form (m and n are integers)

u = x1(t) sin
mπx

1
+ x2(t) sin

nπx

1
,

by using the standard Bubnov–Galerkin method one obtains:

ẍ1 + EF

4

[(mπ
1

)4
x3

1 +
(mπ

1

)2 (nπ
1

)2
x1x

2
2

]

= −EI
(mπ

1

)4
x1 + [sinpt + J (x1, x2)],

ẍ2 + EF

4

[(nπ
1

)4
x3

2 +
(mπ

1

)2 (nπ
1

)2
x2x

2
1

]

= −EI
(nπ

1

)4
x2 + ε[sinpt + J (x2, x1)].

Here

J (u, v) =
t∫

−∞
R(t − s)

(
3

4
u3(s)+ 3

2
uv2

)
ds, λan = λam = 1.

In the zeroth approximation, ε = 0, there are two nonlinear normal vibration modes with
rectilinear trajectories (similar NNMs), x1 = 0 and x2 = 0. A numerical computation using
the presented analytical approach was performed by Petrov for a rod of acrylic plastic ST-1
having E = 6.3 × 109 N m−2 and l = 0.4 m; the rod had a square cross-section with a side of
0.02 m; the representation R(τ) = A e−βτ /τ 1−α, with A = 0.0286, β = 0.05 and α = 0.075
was assumed for the relaxation kernel; n = 1, m = 2.

Parameters of the resonance modes close to the mode x2 = 0 were calculated in the zeroth
and the first approximations with respect to ε. Some variation of the analytical procedure was
introduced here, namely, the amplitude F0 of the zeroth approximation was given and the
period T was calculated.

When the amplitude F0 of the zeroth approximation is equal to 5, the period T = 1.916 ×
10−3 s and the phase shift between the zeroth and the first approximation solutions, x10 and
x11 is: π/2 < φ < π . When F0 = 8, the calculations yield T = 1.197 × 10−3 s and the phase
shift between x10 and x11 lies within the above range.

5. Conclusions and Discussion

At the present time, it is known that NNMs are typical periodical solutions in n-degrees-
of-freedom nonlinear conservative systems. Moreover, normal or quasinormal vibrations
exist in broad classes of nonlinear, near-conservative systems, as was indicated above, in
nonautonomous systems (forced resonances), self-excited systems and systems containing
viscoelastic interactions which are presented in the corresponding equations in a form of in-
tegral operators. It is found that approaches for the analysis of NNMs in conservative systems
are applicable to near-conservative nonlinear finite-dimensional systems.
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It is fruitful to extend the concept of NNMs to distributed nonlinear systems. One of possi-
ble extensions of the concept to continuous oscillators was performed by Vakakis [22]. In the
spirit of Rosenberg [3, 4] and Shaw and Pierre [11], the continuous nonlinear normal modes
were defined as motions during which all material points of the system vary equiperiodically,
vanishing or reaching their extremal values at the same instant in time. This way leads to
equations which are similar to the equations considered previously in the case of conservative
or near-conservative systems.

Other generalizations of the NNMs to distributed systems are possible too:

1. It is possible to determine NNMs in distributed systems as solutions in separated variables
with a uniform time function. The solutions correspond to similar normal modes in finite-
dimensional systems with rectilinear trajectories in the configuration space.

2. During NNM, a finite-dimensional system behaves like a single-DOF conservative one.
Therefore it is advisable to introduce nonlinear stationary traveling waves with a sin-
gle phase (these are so-called simple waves) as a new generalization of NNMs to the
distribution case.

3. There is a coupling of the existence of NNMs and symmetry properties of finite-
dimensional systems [22]. It is possible to determine NNMs in a distributed system as
solutions which are invariant with respect to the symmetry groups of the system.

Note, finally, that problems of NNMs extending to distributed nonlinear systems as a
development of approaches for the analysis of the solutions, are interesting, but no details
are available at present.
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