## Часть І

# Введение

#### Введение

- Оценка ущерба от коррозии
  - развитые страны: 2-4~% ВВП
  - США: 3,1 % от ВВП (276 млрд долларов)
  - потери металла до 20 % годового производства стали
- Основные способы защиты от коррозии
  - легирование
  - защитные покрытия
  - электрохимическая защита
  - изменение свойств коррозионной среды

## Часть II

# Легирование

## 1 Описание

#### Легирование: основные положения

- Легирование введение в состав сплава компонентов, способных приводить к пассивации основного металла за счет образования пленок на его поверхности
- Добавки вводятся равномерно по объему, поэтому
  - сохраняется коррозионная устойчивость при разрушении пленки
  - стоимость легированного металла высока
- Области применения
  - защита от газовой коррозии при высоких T
  - защита изделий, подвергающихся интенсивному механическому воздействию











## 2 Материалы

#### Используемые материалы

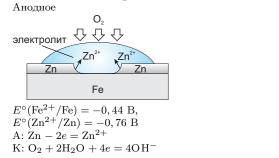
- Легирование не только защищает от коррозии, но и улучшает механические свойства сплава
  - жаростойкость: устойчивость к корозии при T
  - жаропрочность механическая прочность при T
- Легирующие элементы и маркировка сталей Cr (X), Ni (H), Mn (Г), Si (С), Mo (M), W (В), Ti (Т), Ta (ТТ), Al (Ю), Nb (Б)
- Пример: высоколегированная сталь 03Х16Н15М3Б
  - 03 содержание углерода 0,03 %
  - X16 16% хрома
  - Н15 15% никеля
  - М3 3% молибдена
  - Б до 1% ниобия

## Часть III

# Защитные покрытия

## 3 Лакокрасочные покрытия

#### Лакокрасочные покрытия


- Лаки смесь смолистых веществ с летучим растворителем. При сушке растворитель удаляется, а смола полимеризуется
- Краски смесь пигмента со связующим компонентом. Пигментами могут быть
  - оксиды металлов  $(TiO_2, ZnO, Cr_2O_3, Pb_3O_4)$
  - соединения (BaSO<sub>4</sub>, PbSO<sub>4</sub>, As<sub>2</sub>S<sub>3</sub>, oxpa)

- Принцип: изоляция поверхности металла от агрессивной среды
- Лакокрасочные покрытия
  - сплошные
  - газо- и водонепроницаемые
  - химически стойкие
  - хорошо удерживаются на поверхности

#### Металлические покрытия 4

#### Металлические покрытия

Катодные покрытия делятся на катодные и анодные



электролит  $E^{\circ}(\text{Fe}^{2+}/\text{Fe}) = -0.44 \text{ B},$   $E^{\circ}(\text{Sn}^{2+}/\text{Sn}) = -0.14 \text{ B}$ A: Fe  $-2e = \text{Fe}^{2+}$  $K: O_2 + 2H_2O + 4e = 4OH^-$ 

4

- Катодные покрытия защищают основной металл только в отсутствие повреждений поверхности
- Анодные покрытия работают даже при повреждениях поверхности

#### 4.1 Способы нанесения металлических покрытий

#### Способы нанесения металлических покрытий

- Напылённые покрытия
  - хорошо удерживаются на подложке
  - наносятся на изделия сложной формы
  - теоретически могут быть из любого металла
  - недостаток: пористость
- Термодиффузия: расплавленный металл покрытия внедряется в основной
  - так наносят Zn и Sn на железо
  - покрытия достаточно качественные

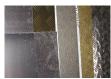
- недостаток:  $t_{\text{пл}}$  покрытия ниже, чем у основы
- Плакирование: совместная горячая прокатка или волочение основного и защитного металлов
  - наиболее качественное покрытие
  - недостаток: применяется только к плоским поверхностям

#### Покрытия, полученные разными способами

#### Напыление






Термодиффузия





Плакирование





#### 4.2 Нарощенные защитные покрытия

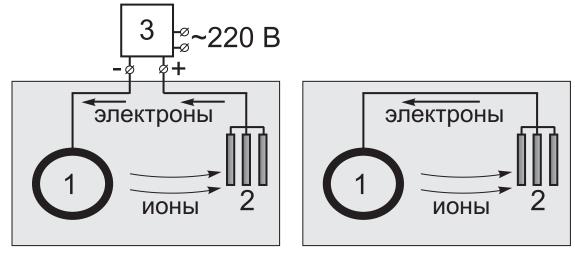
#### Нарощенные защитные покрытия

- Оксидирование наращивание оксидной пленки
  - воронение оксидирование черных металлов
  - анодирование оксидирование алюминия
- Фосфатирование наращивание фосфатной пленки
  - используют для защиты сплавов железа
  - является хорошей подложкой для покрытия краской








воронение

оксидирование фосфатирование

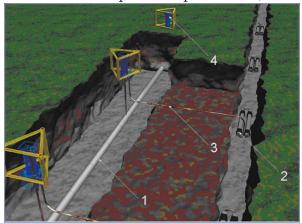
## 5 Электрохимическая защита

#### Электрохимическая защита: принцип

- Используется в проводящих средах (почва, воды)
- Металлическая конструкция *поляризуется*, т.е. её электродный потенциал меняется за счет
  - внешнего источника тока
  - металла с отличающимся потенциалом



1 — конструкция, 2 — анод, 3 — трансформатор Слева — катодная защита, справа — протекторная


#### Схема катодной защиты



1 — трубопровод, 2 — анодный заземлитель, 3 — соединительный кабель, 4 — контрольно-измерительный пункт, 5 — станция катодной защиты, 6 — газоотводная трубка, 7 — глинистый раствор

#### Схема протекторной защиты

Фото-схема протекторной защиты



1 — трубопровод, 2 — протектор, 3 — соединительный кабель, 4 — контрольно-измерительный пункт

## Часть IV

# Изменение свойств коррозионной среды

#### Изменения в коррозионной среде

- Изменение свойств достигается 2 путями
  - удаление агрессивных компонентов
  - введение веществ, тормозящих коррозию
- Первый путь используют для защиты от коррозии теплового оборудования
- Способы удаления растворенного кислорода из воды
  - нагревание
  - продувка инертным газом  $(N_2)$
  - химическая обработка (железные опилки, Na<sub>2</sub>SO<sub>3</sub>)

$$2Na_2SO_3 + O_2 = 2Na_2SO_4$$

• Контроль за pH важен для процессов с водородной деполяризацией  $(E(2{\rm H}^+/{\rm H_2})=-0.059{\rm pH})$ 

## 6 Ингибиторы коррозии

#### Ингибиторы коррозии

- *Ингибитор* вещество, способное уменьшить скорость определенной реакции
- Ингибиторы эффективны для замкнутых систем (системы обогрева и охлаждения)
- По механизму ингибиторы делятся на анодные, катодные, смешанные
- По сфере влияния: в кислой, щелочной и нейтральной среде
- Защитные слои, создаваемые ингибиторами коррозии, всегда тоньше наносимых покрытий

#### Анодные ингибиторы

- Анодные ингибиторы уменьшают площадь анода, но не меняют механизм коррозии:
  - пассиваторы наращивают оксидную пленку
  - пленкообразующие ингибиторы образуют фазовые или адсорбционные пленки
- К пассиваторам относятся:
  - *безопасные ингибиторы* ( ${\rm Cr}\,{\rm O}_4^{2-},{\rm N}\,{\rm O}_3^-,{\rm N}\,{\rm O}_2^-),$  действуют только на аноде
  - $onachыe\ uhгuбumopы\ (H_2O_2)\ могут\ быть\ более\ эффективными, но ускоряют катодный процесс$
- Пленкообразующие ингибиторы:
  - фосфаты и полифосфаты
  - NaOH и Na<sub>2</sub>CO<sub>3</sub>
  - органические ПАВ

#### Катодные ингибиторы

- Катодные ингибиторы:
  - модифицируют механизм коррозии

$$2Na_2SO_3 + O_2 = 2Na_2SO_4$$

- уменьшают площадь катода  $(Ca(HCO_3)_2)$   $K: O_2 + 2H_2O + 4e = 4OH^-,$   $Ca(HCO_3)_2 + Ca(OH)_2 = 2CaCO_3 \downarrow + 2H_2O$
- органические ингибиторы адсорбируются на катоде и уменьшают его площадь