Общие свойства металлов

1 Определения

Определение понятия «металл»

- Металлы вещества кристаллического строения с металлическим типом связи, что имеет следствием следующие физические свойства:
 - механическая прочность (сопротивление деформации);
 - ковкость, пластичность (деформация под действием резкой силы);
 - упругость (восстановление формы после снятия нагрузки);
 - высокая электрическая и тепловая проводимость;
 - хорошая отражательная способность.
- Металлы соединения с электрической проводимостью, которая снижается с повышением температуры в интервале от 0 K до температуры плавления

Место металлов в Периодической таблице

- Большинство элементов Системы металлы
- \bullet В следующей таблице выделены неметаллы. Опущены d и f элементы, которые являются металлами

Период	Группа							
	I	II	III	IV	V	VI	VII	VIII
1	Н							Не
2	Li	Be	В	\mathbf{C}	N	Ο	F	Ne
3	Na	Mg	Al	Si	Р	S	Cl	Ar
4	K	Ca	Ga	Ge	As	Se	Br	Kr
5	Rb	Sr	In	Sn	Sb	Te	I	Xe
6	Cs	Ba	Tl	Pb	Bi	Po	At	Rn
7	Fr	Ra						

Общие замечания

• Металлические элементы: атомы легко отдают электроны

- В периоде металлические свойства ослабляются слева направо, например от Li к F
- В группе металлические свойства усиливаются сверху вниз: В, С, N неметаллы, а Tl, Pb и Bi металлы
- Количественные характеристики активности металла:
 - потенциал ионизации характеризует активность простого вещества: чем меньше I_n , тем выше активность: $M-ne=M^{n+},I_n$
 - стандартный электродный потенциал характеризует активность металла в растворе: чем меньше E° , тем выше активность $M-ne=M^{n+}_{({\rm pactb.})}, E^{\circ}$
- Металлы с положительным потенциалом называют *благородными* (Cu, Ag, Au и т.п.).

2 Химические свойства

Типы реакций металлов

- Далее будут рассмотрены реакции металлов со следующими реагентами:
 - с неметаллами (Cl₂, O₂, S, N₂);
 - с водой (H_2O) ;
 - с неокисляющими кислотами (HCl, $H_2SO_{4(pas6)}$);
 - с кислотами-окислителями (HNO3, $H_2SO_{4(\text{конц})}$);
 - с растворами/расплавами щелочей;
 - с растворами солей.

2.1 Реакции с неметаллами

- Реакции с Cl₂:
 - протекают довольно медленно, требуют нагревания: $2\text{Fe} + 3\text{Cl}_2 \xrightarrow{200-250 \text{ °C}} 2\text{Fe}\,\text{Cl}_3$
 - продукты реакции летучи реакция не замедляется!
 - окисляются даже благородные металлы: $2\mathrm{Au} + 3\mathrm{Cl}_2 \xrightarrow{300~^{\circ}\mathrm{C}} 2\mathrm{Au}\,\mathrm{Cl}_3$
- Реакции с О₂:

- напоминают реакции с Cl_2 (окислители одной силы): $2Cu + O_2 \xrightarrow{400-500~^{\circ}C} 2CuO$
- отличие: оксиды менее летучи, чем хлориды 3Fe + 2O₂ $\xrightarrow{100-600\,^{\circ}\text{C}}$ Fe₃O₄↓ (с поверхности)
- Реакции с S и N₂:
 - требуют еще более высоких температур: $2\text{Ti} + \text{N}_2 \xrightarrow{800 \text{ °C}} 2\text{TiN}, \quad 2\text{Ag} + \text{S} \xrightarrow{200 \text{ °C}} \text{Ag}_2\text{S}$
 - при высоких t неметаллы растворяются в металлах, ухудшая их конструкционные свойства!

2.2 Реакции с водой

• С H₂O реагируют металлы более активные, чем Al:

$$2Na + H_2O = 2NaOH + H_2$$

ullet С повышением t реагировать могут и менее активные металлы:

$$Zn + 2H_2O \xrightarrow{t \approx 80^{\circ}C} Zn(OH)_2 \downarrow +H_2$$

• Fe реагирует с водой в присутствии окислителя:

$$4{
m Fe} + 6{
m H}_2{
m O} + 3{
m O}_2 = 4{
m Fe}({
m O\,H})_3\!\downarrow -$$
 ржавление

- ${\rm Fe}({\rm OH})_3$ рыхлый, а ${\rm Fe}_3{\rm O}_4$ сплошной, поэтому в присутствии влаги железо теряет устойчивость
- Использование последней реакции: удаление ${\rm O}_2$ из технической воды

2.3 Реакции с неокисляющими кислотами

• С неокисляющими кислотами реагируют металлы с отрицательным потенциалом:

$$Fe + 2HCl = FeCl_2 + H_2$$

• Исключение: металлы, соли которых нерастворимы:

$$Pb + 2HCl = PbCl_2 \downarrow +H_2$$
 (с поверхности)

• Растворению может помочь комплексообразование или окислитель:

$$2Cu + 4HCl \xrightarrow{t} 2H[CuCl_2] + H_2,$$

$$2Cu + 4HCl + O_2 = 2CuCl_2 + 2H_2O$$

2.4 Реакции с кислотами-окислителями

• Окисляющие кислоты $(H_2SO_{4(\text{конц})},\ HNO_3)$ более сильные окислители, чем неокисляющие:

$$E^{\circ}(2\mathrm{H^+/H_2})=0$$
 В – неокисляющие кислоты;
$$E^{\circ}(\mathrm{H_2SO_4/SO_2})=0.22$$
 В, $E^{\circ}(\mathrm{HNO_3/NO_2})=0.78$ В

• Эти кислоты окисляют даже благородные металлы:

-
$$Cu + 2H_2SO_{4(KOHII)} = CuSO_4 + SO_2 + 2H_2O;$$

$$- Ag + 2HNO_3 = AgNO_3 + NO_2 + H_2O.$$

- Некоторые металлы *пассивируются* (Al, Cr, Fe).
- ullet Смесь конц. кислот HNO_3 и HCl («царская водка») растворяет за счет комплексообразования:

$$3Pt + 18HCl + 4HNO_3 = 3H_2[PtCl_6] + 4NO + 8H_2O$$

 $Pt + HCl \rightarrow , Pt + HNO_3 \rightarrow$

• $HNO_{3(pa36)}$ – сильный окислитель, а $H_2SO_{4(pa36)}$ – нет:

$$3Cu + 8HNO_{3(pa36)} = 3Cu(NO_3)_2 + 2NO + 4H_2O$$

 $Cu + H_2SO_{4(pa36)} \rightarrow$

2.5 Реакции со щелочами

• С растворами щелочей реагируют *амфотерные* металлы (Al, Zn, Be, Sn и др.):

$$Zn + 2NaOH + 2H_2O = Na_2[Zn(OH)_4] + H_2$$

• Некоторые металлы (со стабильной высшей степенью окисления – W, Mo, Os, Ta, Ru и др.) реагируют со щелочами в присутствии окислителя:

$$2W + 4NaOH + 3O_2 = 2Na_2WO_4 + 2H_2O$$

• Часть благородных металлов реагирует с расплавленными щелочами в присутствии окислителя:

$$Pt + 2KNO_3 + 2KOH = K_2PtO_3 + 2KNO_2 + H_2O$$

2.6 Реакции с солями

• Металлы с большей химической активностью вытесняют менее активные металлы из их солей:

$$Fe + CuSO_4 = FeSO_4 + Cu$$

- Раствор подвергающейся гидролизу соли ведет себя либо как неокисляющая кислота, либо как основание:
 - $AlCl_3 + H_2O = AlOHCl + HCl$ гидролиз;
 - Zn + 2H Cl = Zn Cl₂ + H₂ металл + кислота;
 - $-2AlCl_3 + 2H_2O + Zn = 2AlOHCl_2 + ZnCl_2 + H_2 суммарно$
 - $\operatorname{Na_2CO_3} + \operatorname{H_2O} = \operatorname{NaHCO_3} + \operatorname{NaOH};$
 - $\text{Zn} + 2\text{NaOH} + 2\text{H}_2\text{O} = \text{Na}_2[\text{Zn}(\text{OH})_4] + \text{H}_2;$
 - $-2Na_{2}CO_{3} + 4H_{2}O + Zn = 2NaHCO_{3} + Na_{2}[Zn(OH)_{4}] + H_{2}$

3 Пассивность металлов

- Пассивность металла состояние его поверхности, когда снижается скорость окисления из-за образования на поверхности пленок (например, оксидов), препятствующих окислению.
- Пассивности подвергаются некоторые неблагородные металлы (Fe, Ni, Al, Cr), например:

$$2Cr + 3H_2SO_{4(pa36)} = Cr_2(SO_4)_3 + 3H_2$$

 $Cr + H_2SO_{4(pa36)} + O_2 \implies$

• Небольшие примеси металла, склонного к пассивации, могут вызвать пассивацию основного металла!