

DEPARTMENT OF POWER SYSTEM ENGINEERING

Brakes, Thermal and Thermoelastic Analysis

Josef Voldřich Ukraine, November 2018

Проект "Развитие международного сотрудничества с украинскими ВУЗами в областях качества, энергетики и транспорта" г. Харьков, 11/2018

Степан Прокопович Тимошенко

1878 - 1972

5. Timoshung

- **A grand native of Ukraine, the father of modern engineering mechanics.**
- **His portrait, as the only one, has displayed with reverence in my workroom for 20 years.**
- **He was a giant for mathematical modelling of strength problems in mechanical engineering.**

Encouragement:

- Let's not be afraid to use **MATHEMATICS for solution of our actual problems.**
- **And it is not inevitable to look up only to commercial FEM software.**

Some problems with friction brakes

Brake thermal analysis

Modeling of friction element contacts Contact surface temperature – analytical approach Finite elements models

Uncoupled thermal stress and distortion analysis

Coupled thermal and distortion analysis

The last three parts of the lecture is above all from

J. Voldřich: Brakes, thermal and thermoelastic analysis. In: Hetnarski R. (Ed.), *Encyclopedia of Thermal Stresses***, Vol 1, pp 486-497, Springer Dordrecht, Heidelberg, New York, London 2014**

Motivation

● The springtime 2002 – the chief of undercarriage development department of Škoda Auto, Ing. J. Nepomucký CSc., came to with a problem concerning "**hot judder**" (hot vibration) in disk brakes.

● Nobody of the whole concern Volkswagen AG knew a real cause of the phenomenon and any way how to eliminate it. It was a reason to deal with breaks.

(Volkswagen Group = \sum Volkswagen, Škoda Auto, Audi, Porsche, SEAT, ...)

● Problems with hot judder and brake fading appeared even in the German car factory Volkswagen AG.

A mechanical friction brake is a technical device that serves to slow or stop a moving body, or for keeping it at rest.

The main components of the friction brakes are friction elements.

In braking, a rotating body or system of bodies are in contact with fixed friction elements.

FACULTY OF MECHANICAL ENGINEERING UNIVERSITY OF WEST BOHEMIA

Examples of disk brakes

http://en.wikipedia.org/wiki/Disc_brake Mercedes Benz AMG carbon ceramic brake

Why passenger aircrafts are not able to take off immediately after their landing? Hot brakes are one of the main reason.

The energy dissipated by the disk brake when stopping a passenger car weighting 1,500 kg from a speed of 100 km/h makes 0.15 MJ.

Each 10-disk brake of a Boeing 777 passenger aircraft must be capable of absorbing up to 144 MJ.

out of the book by Breuer, Bill 2008

Leopard 2 during all-out braking operation.

Schematic view of the 1100kW transmission HSWL 354 for heavy tracked vehicles weighing more than 60 tons.

Red lines label brakes.

Some problems with brakes

Thermal stability

Fading – generally a drop of braking power and braking eefect at high temperatures

Formation of bubbles due to evaporation – the brake fluid reaching boiling temperature at the hottest point in the brake caliper

Brake disk deflection – inadequate thermal stability may result from a geometric error

Brake noise

- very difficult to forecast by way of calculation methods

Wear

Corrosion, material degradation

Cracks

Brake judder

- hot judder is induced by thermoelastic instability (our next lecture)

Current vehicular disk brake

Brake disk temperature

UNIVERSITY OF WEST BOHEMIA

ENGINEERING

FACULTY OF MECHANICAL

Repeated stoppings test **Brake Brake System cooling**

FACULTY OF MECHANICAL

ENGINEERING UNIVERSITY OF WEST BOHEMIA

Time

Temperature

Cracks

firemní materiál AUDI

Prof. Barber 1969 described the frictionally excited thermoelastic instability as the cause of the phenomenon that is of critical importance in the design of brakes and clutches.

Modeling of friction element contacts

From a microscopic point of view, contact with friction between two bodies 1 and 2 is a very complex effect, which is affected by the surface roughness, composition of the materials used, their wear, ...

We take only macroscopic physical entities into account.

$$
T_1(x, y, 0, t) = T_2(x, y, 0, t)
$$

q = f pV

$$
q = q_1 + q_2
$$

$$
q_1 = K_1 \frac{\partial T_1}{\partial z} \qquad q_2 = -K_2 \frac{\partial T_2}{\partial z}
$$

Tⁱ – temperature of body i

- *f – friction coefficient*
- *V – sliding velocity*
- *p – normal contact pressure*
- **A2 A1** *q – the heat produced by bodies friction per time unit applied to a unit area qⁱ – the heat flux removed from the contact surface to the body i*
- *Kⁱ – the thermal conductivity coefficient of body i*

Kⁱ – the thermal conductivity coefficient of body i kⁱ = Kⁱ /cρ – the thermal diffusivity

$$
q_1 = q \left(1 + \frac{A_2}{A_1} \frac{K_2}{K_1} \sqrt{\frac{k_1}{k_2}} \right)^{-1},
$$

$$
q_2\!=\!q\!\left(1\!+\!\frac{A_1}{A_2}\frac{K_1}{K_2}\sqrt{\frac{k_2}{k_1}}\right)^{\!-1},
$$

Aⁱ – the size of the corresponding contact area of body i

Example

Intermittent contact

A2

A1

$$
q_1 = q \left(1 + \frac{A_2}{A_1} \frac{K_2}{K_1} \sqrt{\frac{k_1}{k_2}} \right)^{-1},
$$

$$
q_2 = q \left(1 + \frac{A_1}{A_2} \frac{K_1}{K_2} \sqrt{\frac{k_2}{k_1}} \right)^{-1},
$$

A contemporary automobile disk brake

- *● disk from cast iron*
- *● the friction material A of pads*
- *● at least A² /A¹ = 7*

... approximately 98% of the produced heat goes into the disk !!

Brakes, Thermal and Thermoelastic Analysis, **Table 1** Orientation values of parameters of some materials in use, k – thermal conductivity, κ – thermal diffusivity, E – elastic modulus, α – coefficient of thermal expansion, ρ – density

Contact surface temperature

Analytical solution for the heated half-space - 1D problem

We receive, using Laplace transform

for
$$
Q(t) = Q = 1
$$

\n
$$
\Theta_I(z, t) = \Theta_0 + \frac{2\sqrt{k t}}{K} \text{ierfc}\left(\frac{z}{2\sqrt{k t}}\right), \ z \ge 0, \ t > 0,
$$

where

$$
ierfc(\eta) = \frac{1}{\sqrt{\pi}} exp(-\eta^2) - \eta (1 - erf(\eta)),
$$

$$
\mathrm{erf}(\eta) = \frac{2}{\sqrt{\pi}} \int_0^{\eta} \exp(-\zeta^2) \mathrm{d}\zeta
$$

the error function

Surface temperature

$$
Q\frac{2\sqrt{k\,t}}{K\sqrt{\pi}} = Q\frac{2\sqrt{t}}{\sqrt{K\rho\,c\pi}}
$$

 (t) , $T(z,0) = \Theta_0$ 2 2 $(0,t)$ 0, $\frac{H(t, t)}{H(t, t)} = 0$, $K \frac{\partial T(0, t)}{\partial t} = O(t)$, $T(z, 0) = \Theta$ $, 0 \le z \le H, t > 0,$ $\frac{(z, t)}{z} = k \frac{\partial^2 T(z, t)}{\partial \zeta}$, $0 \le z \le H$, $t >$ д $\frac{(H,t)}{\partial z} = 0, \quad K \frac{\partial}{\partial z}$ $-K\frac{\partial T(H,t)}{\partial t} = 0$, $K\frac{\partial T(0,t)}{\partial t} = Q(t)$, $T(z)$ д $\frac{\partial(z,t)}{\partial t} = k \frac{\partial}{\partial t}$ д *z T* (0.*t K z* $T(H,t)$ *K* $z \leq H$, t *z* $T(z,t)$ *k t* $T(z,t)$

Solution by variable separation method

very complicated, unsuitable formula

$$
T(z,t) = \frac{Q(t)}{K} \left(\frac{z}{2H} - \frac{H}{6} \right) + \frac{k}{KH} \int_{0}^{t} Q(\tau) d\tau + Q(0) \frac{2H}{K\pi^{2}} \sum_{n=1}^{\infty} \left\{ \frac{(-1)^{n+1}}{n^{2}} \exp(-k\lambda_{n}^{2} t) \cos(\lambda_{n}) \right\} +
$$

$$
+\frac{2H}{K\pi^2}\sum_{n=1}^{\infty}\left\{\frac{(-1)^{n+1}}{n^2}\cos(\lambda_n z)\int\limits_{0}^{t}\exp\left(-k\lambda_n^2(t-\tau)\right)\frac{dQ(\tau)}{d\tau}d\tau\right\}
$$

H n n where $\lambda_{n} = \frac{\pi n}{H}$ and Θ_{0} $= \! 0$ (Carslaw, Jaeger 1959 - solution only for Q(t)≡Q $_0$)

for
$$
Q(t) = Q = 1
$$
 $\Theta_H(z,t) = \Theta_0 + \frac{2\sqrt{kt}}{K} \sum_{n=0}^{\infty} {\text{ierfc}\left(\frac{2H(n+1)-z}{2\sqrt{kt}}\right)} + \text{ierfc}\left(\frac{2H n+z}{2\sqrt{kt}}\right)}.$

Time dependent heat flux

The general solution of the problem (*) using Duhamel's theorem

$$
T(z,t) = \int_{0}^{t} \Theta_{II}(z,t-\tau) \frac{dQ(\tau)}{d\tau} d\tau + \sum_{j,\tau_{j} \leq t_{B}} \Theta_{II}(z,t-\tau_{j}).\Delta Q(\tau_{j})
$$

if the function Q is smooth in the intervals (τ_j , τ_{j+1}) and has a jump point $\Delta Q(\tau_j) = Q^+(\tau_j) - Q^-(\tau_j)$ to the magnitude at the time points τ_{j} .

Full contact and emergency braking

The first approximation of the surface temperature for emergency braking is **the Fazekas known formula** (1953)

$$
T(0, t) \approx \Theta_0 + \frac{2q_0\sqrt{k}}{K\sqrt{\pi}} \sqrt{t \left(1 - \frac{2t}{3t_B}\right)} \qquad 0 \le t \le t_B
$$

Intermittent contact and emergency braking

 $V(t) = V_{0}.(1-t/t_{B}) -$ the sliding velocity *tB - the braking time both the contact pressure p and friction coefficient f are considered constant*

, where 2a is the full length of the contact (of the pad). The Péclet number $\text{Pe} = \frac{1}{2k}$

The one-dimensional approximation is useful for **Pe > 10**.

For intermittent contact, the flux *Q*(*t*) is positive only if we consider passing a given contact point under the friction pad having 2*a* in width size.

The rise **Δ***T* in temperature when the surface point is passing under the friction pad

$$
\Delta T \approx q \frac{2\sqrt{k}}{K\sqrt{\pi}} \sqrt{\Delta t} = \frac{2qa}{K\sqrt{\pi}\sqrt{Pe}}
$$

a given point at disk surface

 $V_0 = 11,2 \text{ m/s}$ initial sliding velocity (which **corresponds to the automobile velocity of 100 km/h)** $t_B = 4.2 s$ braking time $q_0 = 8.4 \text{ W/mm}^2$ initial heat flux **2***a* **= 112 mm length of trajectory of a given point under the friction pad** *L* **= 780 mm trajectory of the point in full revolution** *H* **= 26,4 mm half thickness of the disk Pe⁰ = 24160 Péclet number for t=0**

$$
\Delta T \approx q \frac{2\sqrt{k}}{K\sqrt{\pi}} \sqrt{\Delta t} = \frac{2qa}{K\sqrt{\pi}\sqrt{Pe}} \quad \text{63,2°C}
$$

analytical approach Δ*T* **118^oC , i.e. they have cca 32% error by FEM calculation**

Maximal contact surface temperature

Typical are different length and time measures, so that analyses show a different degree of complexity and require different approaches and computational efforts !!

Standard FEM models are excellent for T_b **and** T_s

 $T_{max} = T_b \oplus T_s \oplus T_f \oplus T_{per}$

2D axisymmetric model

3D model with periodicity

Thermal stress - analytical approach (for flash temperature)

1D model and the stress acting on the thin surface layer

A particular solution to the thermoelastic equation in the form of a strain potential

 $2G$ **u** = $\nabla \Phi$

where

 $=\frac{2(1+v)}{2(1+v)}$ *E*

G

 \mathbf{u} = $\left(u_{\mathsf{x}}^{},u_{\mathsf{y}^{}},u_{\mathsf{z}}^{} \right)$ displacement vector

T **temperature field previously calculated coefficient of thermal expansion**

shear modulus

T **and Φ are functions of only one space variation** *z* 2 2 *zx yy* ∂z $\partial^2 \Phi$ $\sigma_{\rm osc}=\sigma_{\rm osc}=$ $\sigma_{_{X\!Y}} = \sigma_{_{Y\!Z}} = \sigma_{_{ZX}} = 0 \;\;\;\;\; \sigma_{_{ZZ}} = 0$

Brief heating of an intensity intenzity *q* **over a time Δ***t* **brings a compressive stress of the surface z=0**

$$
\sigma_{xx} = \overline{\sigma}_{yy} \approx -\frac{2E\alpha\sqrt{k}}{(1-\nu)K\sqrt{\pi}} q\sqrt{\Delta t}
$$

The difference of normal displacements of the surface under the pad (with a length 2*a***)**

$$
\Delta \overline{u}_z \approx -2cq\,a^2/Pe
$$

where $c = (1 + v)\alpha / K$

Uncoupled thermal stress

Uncoupled thermal stress

Standard FEM models

Coupled thermal analysis

$$
c_i \rho_i \frac{\partial T_i}{\partial t} + V_i \frac{\partial T_i}{\partial x} = \frac{\partial}{\partial x} (K_i \frac{\partial T_i}{\partial x}) + \frac{\partial}{\partial z} (K_i \frac{\partial T_i}{\partial z}), \ i = 1, 2,
$$

where $V_2 = V(t)$, $V_1 = 0$

+ boundary conditions and temperature contact with the friction heating

The Galerkin FE discretization method is unstable, owing to the Pe > 2. This difficulty can be removed using Petrov-Galerkin method. An implementation of P-G method is, for example, in software ABAQUS.

Coupled thermal and distortion analysis

Example

Results obtained by my in-house software

Disk with an inconvenient

surface processing

Example – A brake fading problem

289 $\begin{array}{c} 1\,\mathrm{N} \\ 5\,\mathrm{0N} \\ 8\,1\,\mathrm{N} \end{array}$ $\frac{0}{11.5}$ **289 ^oC** 280.1 260. 231.2 $231.$ **154.5 ^oC** 202.3 $282.$ **The flash** 173.4 173.4 $\begin{array}{c} \begin{array}{c} \text{T} \ \text{T} \ \text{S} \\ \text{S} \end{array} \\ \begin{array}{c} \text{S} \ \text{S} \end{array} \end{array}$ E E E
B B B
B B B 144.5 144.5 **temperature** 115.6 115.6 $86,7$ 57.6 57.1 28.9 28.1 0.5 1.5 2.5 TIME 3.5 4.5 1.5 2.5 TIME 3.5 4.5 0.5 27.0809 215.0960 28.25086 161.2566 13.56080 **The surface compressive stress 54 MPa 430 MPa**

Standard disk

Coupled thermal and distortion analysis

FACULTY OF MECHANICAL ENGINEERING OF WEST BOHEMIA

Hot judder and hot spots

Prof. J.R. Barber described the frictionally excited thermoelastic instability as cause of "hot judder" a "hot spots" at a high sliding velocity:

J.R. Barber: Thermoelastic instabilities in the sliding of conforming solids, *Proc. Roy. Soc.* **A 312 (1969), 381-394.**

the mutual coupling

thermal deformation – contact pressure – frictional heat generation – thermal deformation

DEPARTMENT OF POWER SYSTEM ENGINEERING

Thank You very much