ABOUT ONE CLASS OF LINEAR TRANSFORMATIONS OF NON-STATIONARY RANDOM SEQUENCES
 Cheremskaya N.V.
 National Technical University «Kharkiv Polytechnic Institute», Kharkiv

The paper deals with the problem of linear transformations of non-stationary random sequences of certain classes.

Consider a random sequence $\xi(n, \omega)$ second order with $M \xi(n, \omega)=0$. Let $K(n, m)=M \xi(n, \omega) \overline{\xi(m, \omega)}$ is correlation function. After embedding $\xi(n, \omega)$ in Hilbert space H_{ξ} get the sequence x_{n} at H_{ξ}, where $K(n, m)=\left\langle x_{n}, x_{m}\right\rangle_{H_{\xi}}$. Sufficiently wide classes of random sequences within the framework of the correlation theory can be obtained by considering linear transformations of sequences. x_{n} at H_{ξ}. The sequence $z_{n}=B x_{n}$ is called the dilation of the r-th order of the sequence x_{n}, if B is linear bounded operator in H_{ξ} and $\operatorname{dim} \overline{\left(I-B^{*} B\right) H_{\xi}}=r$. The function $W(n, m)=K(n+1, m)-K(n, m+1)$ of two discrete arguments will be called the correlation difference.

Theorem. In order to z_{n} be a first-order dilatation of a stationary sequence x_{n}, it is necessary and sufficient that it is correlation difference be:

$$
W_{z z}(n, m)=W_{x x}(n-m)+\sum_{\alpha, \beta=1}^{2} \Phi_{\alpha}(n) J_{\alpha \beta} \overline{\Phi_{\beta}(m)},
$$

where $W_{x x}(n-m)=2 i \int_{-\pi}^{\pi} \sin \lambda e^{i(n-m) \lambda} d F(\lambda), \quad F(\lambda)-$ non-decreasing function of limited variation, $J_{\alpha \beta}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, where $\Phi_{\alpha}(n)-$ linear functional from x_{n} and $\Phi_{1}(n+1)=\Phi_{2}(n)$.

Theorem. In order z_{n} to be a first-order dilation of a sequence $x_{n}=A^{n} x_{0}$, where A is a bounded dissipative operator with a discrete spectrum $\left\{\lambda_{k}\right\}$ and a onedimensional non-Hermitian subspace, it is necessary and sufficient that it is correlation difference be: $W_{z z}(n, m)=i \varphi(n) \overline{\varphi(m)}+\sum_{\alpha, \beta=1}^{2} \Phi_{\alpha}(n) J_{\alpha \beta} \overline{\Phi_{\beta}(m)}$, where $\varphi(n)=\sum_{k=1}^{\infty} C_{k} \Lambda_{k}(n) ; \quad \sum_{k=1}^{\infty}\left|C_{K}\right|^{2}<\infty ; \quad \Lambda_{k}(n)=-\frac{1}{2 \pi i} \int_{\gamma} \lambda^{n} \frac{\beta_{k}}{\overline{\lambda_{k}}-\lambda} \prod_{j=1}^{k-1} \frac{\lambda_{j}-\lambda}{\overline{\lambda_{j}}-\lambda} d \lambda ;$ $\left(J_{\alpha \beta}\right)=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, and $\Phi_{\alpha}(n)-$ linear functional from z_{n}.

