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The paper deals with the problem of linear transformations of non-stationary 

random sequences of certain classes. 

Consider a random sequence ( ),n   second order with М ( ), 0n  = . Let 

К ( ) ( ) ( ), , ,n m M n m   =  is correlation function. After embedding ( ),n   in 

Hilbert space H  get the sequence 
nx  at ,H  where ( ), ,n m H

K n m x x
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Sufficiently wide classes of random sequences within the framework of the 

correlation theory can be obtained by considering linear transformations of 

sequences. 
nx  at H . The sequence 

n nz Bx=  is called the dilation of the r-th order of 

the sequence 
nx , if В is linear bounded operator in H  and ( )dim I B B H r
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The function ( ) ( ) ( ), 1, , 1W n m K n m K n m= + − +  of two discrete arguments will be 

called the correlation difference. 

Theorem. In order to 
nz  be a first-order dilatation of a stationary sequence 

nx , it 

is necessary and sufficient that it is correlation difference be:  
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 where ( )n −  linear functional from 

nx  and 
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Theorem. In order nz  to be a first-order dilation of a sequence 0 ,n

nx A x=  where 

A is a bounded dissipative operator with a discrete spectrum  k  and a one-

dimensional non-Hermitian subspace, it is necessary and sufficient that it is 
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 and ( )n −  linear functional from .nz  


