РАСЧЕТ ПАРАМЕТРИЧЕСКОГО СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ

Кропачек О.Ю., Трофименко Е.С.

Национальный технический университет «Харьковский политехнический институт», г. Харьков

В работе изложен метод расчета параметрического стабилизатора напряжения (ПСН), учитывающий один дестабилизирующий фактор – уход напряжения на входе ПСН.

Для расчета ПСН необходимо выбрать стабилитрон VD из набора H, определить балластное сопротивление $R_{\rm B}$ и напряжение $U_{\rm B}$ на входе ПСН, которые обеспечивают максимальный КПД ($\eta \to {\rm max}$). при заданном значении $\delta_{\rm B}$ и ограничениях: 1) $d_{\rm H} \le d_{\rm ZH}$; 2) $I_{\rm Zmin} \le I_{\rm C} \le I_{\rm Zmax}$, где $d_{\rm H}$ — расчетное значение ухода напряжения на нагрузке, $I_{\rm C}$ — расчетное значение тока через стабилитрон, $I_{\rm Zmax}$ — максимально допустимый ток через стабилитрон, $\delta_{\rm ZH}$ — максимальный допустимый уход напряжения на нагрузке.

Для отобранных стабилитронов, согласно соответствующему алгоритму на основании анализа распределения отклонения напряжения на нагрузке $\delta_H(U_B)$ всех граничных решений $\delta_H(U_B)$ и требования δ_{ZH} , определяются оптимальные решения $\delta_H(U_B)_{opt}$.

Используя найденные значения $\delta_H(U_B)_{opt}$, рассчитываются КПД ПСН с отобранными стабилитронами. Среди всех стабилитронов выбирается один, который в составе ПСН обеспечивает максимальный КПД.

С выбранным стабилитроном выполняется расчёт ПСН. При этом определяются:

- 1) напряжение U_B на входе ПСН;
- 2) балластное сопротивление $R_{\rm E}$;
- 3) ток I_B на входе ПСН и ток I_C через стабилитрон;
- 4) мощность P_B на входе ПСН и КПД h.

Расчет обеспечивает получение максимального КПД и является решением задачи оптимального синтеза ПСН в формате математического программирования (ФМП). При расчете нелинейной электрической цепи применен метод линейной аппроксимации BAX.

Изложенная методика может быть использована расчете параметрического стабилизатора c несколькими дестабилизирующими факторами. Например, отклонение окружающей температуры среды, отклонение тока нагрузки, отклонение $R_{\rm E}$ и т.д.