ТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ ПРОИЗВОДСТВА ЖЕЛЕЗОХРОМОВОГО КАТАЛИЗАТОРА КОНВЕРСИИ ОКСИДА УГЛЕРОДА ВОДЯНЫМ ПАРОМ.

Гармаш Б.К.

«Украинская государственная академия железнодорожного транспорта», г. Харьков

Процесс конверсии оксида углерода водяным паром является одним из основных методов получения водорода в промышленных условиях, с достаточной степенью превращения данный процесс может осуществляться только в присутствии катализатора и проводится в две ступени. Лимитирующей весь процесс является первая среднетемпературная стадия, которая проводится, в диапазоне температур 350-550 °C. Технические характеристики катализатора оказывают основное влияние на ход протекания процесса конверсии.

В процессе приготовления катализатора, а также на отдельных стадиях его производства, решающее значение имеет выбор исходного сырья и технологической схемы приготовления. Способ приготовления влияет на физико-химические свойства катализатора, его состав и наличие различных примесей в катализаторной массе.

В ходе проведения исследований по разработке железохромового катализатора с использованием в качестве сырья сумского железного купороса подбирался наиболее конкурентный способ его приготовления и оптимальные параметры условий приготовления. По результатам физикохимических исследований опытных образцов, предпочтение отдали способу приготовления совместным осаждением сульфатов железа, меди и хрома карбонатом натрия. Но при этом был установлен ряд недостатков данного способа приготовления. Отстаивание суспензии происходит достаточно долго и зависит от размеров и аморфности частиц, это является узким местом в технологии получения катализатора и есть необходимость в изучении факторов, влияющих на формирование структуры частиц осадка. Для увеличения скорости осаждения суспензии был проведен эксперимент по изучению влияния коагулирующих добавок. В качестве коагулянтов использовались различные растворы с приведенными веществами: Al₂(SO₄)₃, Al(NO₃)₃, MgSO₄, MgCl₂, AlCl₃, этиловый спирт.

Технология совместного осаждения позволяет получить каталитическую систему, взаимодействие компонентов которой значительно более глубокое, чем при смешении. Следовательно, катализатор может обладать повышенной активностью.