ВЛИЯНИЕ ТЕМПЕРАТУРЫ ОТЖИГА НА ФАЗОВЫЙ СОСТАВ ВАКУУМНО-ДУГОВЫХ ПОКРЫТИЙ СИСТЕМЫ ZR-TI-SI-N Соболь О.В., Дармина К.А.

Национальный технологический университет «Харьковский политехнический институт» г. Харьков

На основе конденсатов, полученных в сильно неравновесных условиях осаждения из ионно-плазменных потоков в последние годы создан новый класс высокотвердых и сверхтвердых материалов. Недостатком таких материалов является относительно невысокая термическая стабильность их фазового состава, структуры и напряженного состояния, что определяющим образом сказывается на их физико-механические свойства. Высокую термическую стойкость структуры и свойств наноструктурных покрытий можно достичь при использовании тройных нитридных систем с высокой стойкостью метало-нитрида против разложения (MeN —>Ме+N_o, где N_o газообразный азот) и взаимодействия высвободивщегося переходного металла с активными примесными атомами газовой рабочей атмосферы и прежде всего кислородом. С этой точки зрения очень перспективными являются такие нанокомпозиты как Zr-Si-N или Ti-Si-N, четырехкомпонентную Zr-Ti-Si-N, включающую систему элементы трехкомпонентных систем в качестве составляющих.

Целью работы было исследовать влияние высокотемпературных отжигов в вакууме и воздушной среде на фазовый состав и структуру вакуумно-дуговых покрытий системы Zr-Ti-Si-N.

Показано, что уменьшение поступления активных кислородных атомов при переходе от отжигов на воздухе к отжигам в вакуумной атмосфере повышает стабильность фазового состава от 800^{0} С при отжиге в воздушной атмосфере до 1000° С при отжиге в вакууме 10^{-3} Па. При этом в случае вакуумного отжига изменение кристаллического фазового состава, в первую очередь, определяется кристаллизацией силиконитрида и образованием кристаллитов β -Si₃N₄ с гексагональной решеткой, а также слабо выраженным процессом образования окисла ZrO_2 , не приводящим к распаду твердого раствора (Zr,Ti)N, а лишь увеличивающего удельный вклад в нем титановой составляющей. В отличие от вакуумного отжига при отжиге в воздушной атмосфере уже при $T_{\text{отж}} = 800^{\circ}$ С наблюдается сильное окисление как материала покрытия, так и материала основы в местах разрушения покрытия. При этом происходит полный распад твердых растворов (Zr, Ti)N и (Ti, Zr)N и образование в покрытиях окислов ZrO_2 (JCPDS 42-1164) и TiO₂ (JCPDS 46-1238)