CALCULATION OF PLASMA TRANSPORT VELOCITY IN F2-REGION OF IONOSPHERE ON ION AND ELECTRON TEMPERATURES AND ELECTRON DENSITY, MEASURED BY THE INCOHERENT SCATTER METHOD Grinchenko S.V.

Institute of Ionosphere of National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Kharkiv

The actual problem is a theoretical calculation of plasma transport velocity on electron density data, measured by incoherent scatter method. Comparison of profiles of transport velocity vertical component $v_z(h)$, theoretically calculated and directly measured by incoherent scatter method, would allow to draw a conclusion of compliance of measured ionospheric parameters in the frameworks of F2-region aeronomy theory. It would confirm correctness of measurement of mentioned ionoshperic parameters by incoherent scatter method.

The continuity equation $\frac{\partial n_i}{\partial t} = q - L - \frac{\partial (n_i v_z)}{\partial h}$ of space-time distribution of O⁺ ions allows to calculate plasma transport velocity $v_z(h)$ on known ion and electron temperatures T_i , T_e and electron density $n_e(h)$. Ion O⁺ density n_i is calculated from electron density n_e on the assumption of the balance of ion-molecular reactions in F2-region. Ion production q and recombination rate L are defined from corresponding model conceptions about photochemical reactions, a solar ultraviolet spectrum, neutral atmosphere parameters. At midday, when $\frac{\partial n_i}{\partial t} = 0$, the decision of the continuity equation $q - L - \frac{d(n_i v_z)}{dh} = 0$ is set by the formula: $v_z(h) = \frac{1}{n_i(h)} \left(F_u - \int_{h}^{h} (q - L) dh \right)$, where $F_u = 10^8 \text{ cm}^{-2} \text{s}^{-1} - \text{a}$ flux of O⁺ ions

on the upper border (h_u =600 km) of selected height interval.