В.В. ТРЕГУБЕНКО, *В.Н. ГРИЩЕНКО*, к.т.н., доц.

ПРОЕКТИРОВАНИЕ КОНСТРУКЦИЙ С ОДНОСТОРОННИМИ СВЯЗЯМИ

В природе и технике часто встречаются задачи, объективными физическими моделями которых являются задачи с односторонними связями. В связи с этим актуальным является разработка новых методов и технологий решения такого класса задач. Предложенный метод основан на минимизации функционала с ограничениями типа неравенства. В общем виде задача формулируется так:

$$f(x^*) = \min f(x);$$

$$x \in R;$$
(1)

$$\Omega = \{x \in R_n, w_i \mid x = 0, \ j = 1, 2... m; m < n \ ; \ \Omega_i(x) \le 0, \ (j = 1, 2... k)\}, \ (2)$$

где $x^* = \{x_1, x_2, \dots x_n\}$ — вектор проектирования; Ω — область допустимых значений; $w_j(x) = 0$; $\Omega_j(x) \le 0$ — равенства и неравенства; f(x), $w_j(x)$, $\Omega_j(x)$ — непрерывные функции.

Для общего случая задачи нелинейного программирования с ограничениями равенствами и неравенствами введем функционал Лагранжа в следующем виде: L(x,u,c)=f(x). В отличии от классических множителей u_j при ограничениях равенствах $w_j(x)$, которые являются непрерывными функциями, множители c_j при ограничениях неравенствах $\Omega_j(x) \le 0$ являются разрывными. В результате этого условия оптимальности Куна-Такера представляют систему нелинейных равенств-неравенств.

В работе рассматривается модификация функционала Лагранжа, в которой выравнивается статус множителей, а алгоритм (1) решения задачи нелинейного программирования сводится к классической схеме.

В качестве примера выбрана плоская задача вантовой конструкции моста (см. рис. 1).

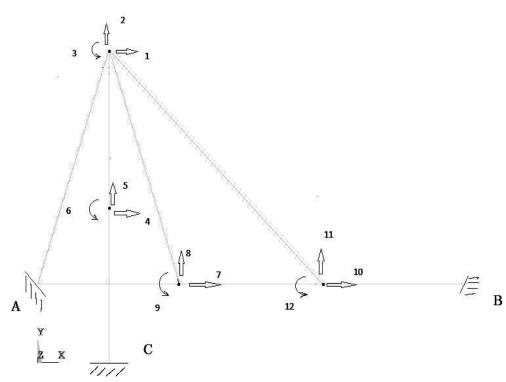


Рис. 1. Общий вид

Параметрическая модель вантовой конструкции построена с использованием программного комплекса ANSYS. Анализ напряженно-деформированного состояния проведен на основе МКЭ. Оценка результатов, полученных в процессе решения задачи с помощью программного комплекса ANSYS и предложенным методом, приведена в таблице 1.

Таблица 1 - Перемещения

Вид решения	Перемещения точек конструкции		
	Q1	Q8	Q11
ANSYS solution	-0.0103м	-0.0106м	-0.011м
Min LN	-0.013м	-0.0106м	-0.011м

Анализ и сравнение полученных результатов дает возможность судить о том, что данный метод позволяет получать точные результаты, поскольку не является приближенным.

Список литературы: 1. *А.Б.Каплун, Е.М.Морозов, М.А.Олферьева* «Ansys в руках инженера»,- М: УРСС 2003,-269 с. **2.** *Ельстер К.Х.* «Введение в нелинейное программирование», -М: Наука, 1985, 264с. **3.** *Ногин В.Д., Протодьяконов И.О.* «Основы теории оптимизации»,- Высш. шк., 1986 – 384 с