виготовленні мідної литої короткозамкненої обмотки дозволяє підвищити технологічні якості її виготовлення. Вказані домішки збільшують текучість, знижують лінійну і об'ємну усадку мідного розплаву при заливці його в пази осердя ротора. Основний недолік такої короткозамкненої обмотки полягає в наявності газової пористості, тонких раковин або пустот в стрижнях мідної обмотки. Для боротьби з цими явищами в мідний сплав обмотки ротора додатково вводиться літій. Наявність літію в металі обмотки дозволяє розкислювати і дегазувати мідь, а також збільшує текучість розплавленого металу. Він також підвищує питому електропровідність мідного сплаву в литому металі обмотки. Літій надає модифікуючу дію на структуру сплаву, що значно підвищує стабільність якості короткозамкненої обмотки. Пропонується удосконалювати технологію заливки мідного сплаву в пази ротора і продовжувати пошук необхідних домішок в мідний сплав для поліпшення його ливарних, електричних і міцнісних характеристик.

Список литературы: 1. *Копылов И.П.* Электрические машины. — М.: Высш. шк., 2004. **2.** Патент Украины на полезную модель № 23951, кл. H02K 3/02, 2010.

УДК 621.313

ОЛЬХОВСКИЙ А. Н., *МИРОШНИЧЕНКО А. Г.*, канд. техн. наук

ПРИМЕНЕНИЕ ЭКОЛОГИЧЕСКИ БЕЗОПАСНОЙ ТЕХНОЛОГИИ ПРИ ПРОПИТКЕ ОБМОТОК ЭЛЕКТРИЧЕСКИХ МАШИН

Загрязнение окружающей среды, истощение природных ресурсов и нарушение экологических связей в экосистемах стали глобальными проблемами. Наиболее масштабным и значительным является химическое загрязнение окружающей среды несвойственными ей веществами химической природы.

В процессе изготовления обмоток электрических машин и после их укладки в пазы сердечников производится пропитка с целью заполнения лаком воздушных включений и пустот в обмотке и изоляции с последующей полимеризацией основы лака. Для пропитки применяются специальные пропиточные лаки, состоящие из лаковой основы (масляной, смоляной, эфироцелюлозной) и растворителей, которые представляют собой легкоиспаряющиеся жидкости: бензол, толуол, ксилол, и др. При сушке растворители должны испариться из обмоток. Если их не нейтрализовать, они рассеиваются в атмосфере, загрязняя окружающую среду. Указанного негативного избежать, влияния ОНЖОМ если применить водоэмульсионный пропиточный состав, позволяющий сократить выброс в атмосферу опасных веществ. Водоэмульсионные пропиточные лаки являются ЭМУЛЬСИЯМИ лаковой основы, которая может ИЗГОТОВЛЯТЬСЯ синтетических смол, а также из высыхающих масел - льняного и тунгового, не

растворителей, ЧТО обеспечивает содержащие органических пожаровзрывобезопасность пропиточных участков. Применение водоэмульсионных пропиточных лаков значительно улучшает условия труда и снижает себестоимость изделий. Сравнительные испытания изоляции, пропитанной масляно-битумными, масляно-смоляными и водоэмульсионными лаками, не выявили различий в их диэлектрических характеристиках. Таким образом применение водоэмульсионных пропиточных лаков обеспечивает пожаро- и взрывобезопасность пропиточных участков и уменьшает негативное влияние человека на природу.

УДК 621.313

ТАНЯНСКИЙ В. Ю., МИРОШНИЧЕНКО А. Г., канд. техн. наук

ПРИМЕНЕНИЕ ЭКОЛОГИЧЕСКИ ЧИСТОЙ ТЕХНОЛОГИИ ПРИ ОКРАСКЕ ЭЛЕКТРИЧЕСКИХ МАШИН

На протяжении многих тысячелетий человечество для защиты и отделки изделий пользовалось жидкими красками. В состав большинства современных жидких лакокрасочных покрытий входят полимерные материалы, органические растворители и другие огнеопасные и вредные вещества.

Новым этапом в развитии лакокрасочного производства явилась разработка порошковых красок - одного из наиболее перспективных и многообещающих видов лакокрасочной продукции. Порошковые краски - это твердые дисперсные композиции, в состав которых входят специальные пленкообразующие смолы, отвердители, пигменты, наполнители и целевые добавки. Покрытия, образованные ими, имеют привлекательный внешний вид, высокую твердость и прочность, устойчивы к истиранию и атмосферному воздействию. Типовой процесс последовательность порошковой окраски представляет собой следующую подготовка поверхности изделия к окраске; электростатическое нанесение порошкового покрытия в специальной камере; нагрев изделия в печи оплавления и полимеризации при температуре 140-220°С. В результате нагревания порошок оплавляется, полимеризуется и покрытие приобретает необходимые защитные и декоративные свойства.

При порошковой окраске использование лакокрасочного материала составляет 97 - 98%, что резко снижает степень загрязнения окружающей среды при одновременном уменьшении энергозатрат на 30%. В настоящее время порошковые краски находят все более широкое применение в технике для защиты металлов от коррозии, для электроизоляции, для получения защитно-декоративных покрытий. В электромашиностроении они применяются для покрытия микротрансформаторов, тороидальных магнитопроводов, магнитопроводов и корпусов электромашин.