Т. Л. Тринева

Физико-технологический институт металлов и сплавов НАН Украины, г. Киев

ОСНОВЫ ПРОЕКТИРОВАНИЯ ЛИТЕЙНОЙ ОСНАСТКИ В УСЛОВИЯХ СОВРЕМЕННОГО ПРОИЗВОДСТВА

В настоящее время, выживаемость предприятия зависит от внедрения новых технологий, которые влекут за собой ряд перестроек целого предприятия, а именно: переход предприятий на новый уровень станочного парка, а отсюда новый подход как к конструированию изделий так и к проектированию оснастки для их изготовления.

Внедрение новых технологий и станков нового поколения позволяют повысить не только качество выпускаемых изделий, но и ускорить процесс как подготовки производства так и выпуск готового изделия в целом.

Так внедрение в производство n-координатных станков позволяет иначе подойти к конструированию изделий и проектированию их оснастки.

На первый этап проработки технологичности изделия выходит математическое моделирование, позволяющее минимизировать ошибки еще на стадии его разработки, что уменьшает затраты времени на подготовку производства и освоение новых изделий.


Однако при проектировании оснастки, изготовление которой планируется на n-координатном станке, следует не забывать о качестве получаемой отливки или модели.

Практика показыват, что расчлененная оснастка по сроку службы во много раз долговечнее, а качество, получаемых отливок или моделей намного превышает качество изделий, полученных на монолитной оснастке. Отъемные части должны, обязательно, изготовлены с элементами газоотводов и с учетом, влияющих факторов оборудования на котором они будут изготовлены. Например, оснастка, изготовленная на установке «Vanguard» (технологии Raypid Prototyping). Элементы оснастки должны быть расположены на столе построения в одной оси, а оснастка должна бысть спроектирована с учетом поправочных коэффициентов отклонения, приведенных в таблице [1].

Наимено- вание устано- вок	Материал	Гаран- тиро- ван- ный	Поправочный коэффициент отклоне- ний – К _о , %		
		допуск, мм	X	Y	Z
SLA-5000	Фотополимерная смола	±0,05	-0,05÷-0,25	0,05÷0,15	0,10÷0,30
Vanguard HS	Dura Form, Dura Form GH (полиамидный по- рошок)	±0,40	0,80÷1,30	0,15÷0,45	1,15÷2,30
	ST-100 (КМ _{Fe-Cr}), A6 (КМ _{Fe-W}) (металлический порошок)	±0,30	0,80÷1,10	0,35÷0,60	1,10÷2,30

Такой подход позволяет не только избежать коробления, растрескивания оснастки, но и получить качественную отливку или модель.

На Рис. 1,2 показаны модель отливки, модель расчлененной оснастки (верх не показан), соответстенно.

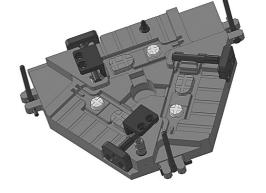


Рис.1 Модель на отливку «Рама-боковая»

Рис. 2 Модель 3-х местной Прессформы на отливку «Рычаг»

Список литературы

1. *Тринева Т. Л.* Технологические процессы изготовления литейной оснастки с использованием методов быстрого прототипирования. Дис. канд. техн. На-ук. Киев, 2009. -200с.